ﻻ يوجد ملخص باللغة العربية
The unprecedented astrometry from Gaia DR2 provides us with an opportunity to study in detail molecular clouds in the solar neighbourhood. Extracting the wealth of information in these data remains a challenge, however. We have further improved our Gaussian Processes-based, three-dimensional dust mapping technique to allow us to study molecular clouds in more detail. These improvements include a significantly better scaling of the computational cost with the number of stars, and taking into account distance uncertainties to individual stars. Using Gaia DR2 astrometry together with 2MASS and WISE photometry for 30 000 stars, we infer the distribution of dust out to 600 pc in the direction of the Orion A molecular cloud. We identify a bubble-like structure in front of Orion A, centred at a distance of about 350 pc from the Sun. The main Orion A structure is visible at slightly larger distances, and we clearly see a tail extending over 100 pc that is curved and slightly inclined to the line-of-sight. The location of our foreground structure coincides with 5-10 Myr old stellar populations, suggesting a star formation episode that predates that of the Orion Nebula Cluster itself. We identify also the main structure of the Orion B molecular cloud, and in addition discover a background component to this at a distance of about 460 pc from the Sun. Finally, we associate our dust components at different distances with the plane-of-the-sky magnetic field orientation as mapped by Planck. This provides valuable information for modelling the magnetic field in 3D around star forming regions.
We use the $mathit{Gaia}$ DR2 distances of about 700 mid-infrared selected young stellar objects in the benchmark giant molecular cloud Orion A to infer its 3D shape and orientation. We find that Orion A is not the fairly straight filamentary cloud t
We compare the distribution in position and velocity of nearby stars from the Gaia DR2 radial velocity sample with predictions of current theories for spirals in disc galaxies. Although the rich substructure in velocity space contains the same inform
Very precise observational data are needed for studying the stellar cluster parameters (distance, reddening, age, metallicity) and cluster internal kinematics. In turn, these give us an insight into the properties of our Galaxy, for example, by givin
The second data release of the Gaia mission has revealed, in stellar velocity and action space, multiple ridges, the exact origin of which is still debated. Recently, we demonstrated that a large Galactic bar with pattern speed 39 km/s/kpc does creat
We study the three dimensional arrangement of young stars in the solar neighbourhood using the second release of the Gaia mission (Gaia DR2) and we provide a new, original view of the spatial configuration of the star forming regions within 500 pc fr