ﻻ يوجد ملخص باللغة العربية
We use the $mathit{Gaia}$ DR2 distances of about 700 mid-infrared selected young stellar objects in the benchmark giant molecular cloud Orion A to infer its 3D shape and orientation. We find that Orion A is not the fairly straight filamentary cloud that we see in (2D) projection, but instead a cometary-like cloud oriented toward the Galactic plane, with two distinct components: a denser and enhanced star-forming (bent) Head, and a lower density and star-formation quieter $sim$75 pc long Tail. The true extent of Orion A is not the projected $sim$40 pc but $sim$90 pc, making it by far the largest molecular cloud in the local neighborhood. Its aspect ratio ($sim$30:1) and high column-density fraction ($sim45%$) make it similar to large-scale Milky Way filaments (bones), despite its distance to the galactic mid-plane being an order of magnitude larger than typically found for these structures.
Gaia Data Release 2 includes observational data for 14,099 pre-selected asteroids. From the sparsely sampled G band photometry, we derive lower-limit lightcurve amplitudes for 11,665 main belt asteroids in order to provide constraints on the distribu
The unprecedented astrometry from Gaia DR2 provides us with an opportunity to study in detail molecular clouds in the solar neighbourhood. Extracting the wealth of information in these data remains a challenge, however. We have further improved our G
Gaias Early Third Data Release (EDR3) does not contain new radial velocities because these will be published in Gaias full third data release (DR3), expected in the first half of 2022. To maximise the usefulness of EDR3, Gaias second data release (DR
We here apply a novel technique selecting quasar candidates purely as sources with zero proper motions in the Gaia data release 2 (DR2). We demonstrate that this approach is highly efficient toward high Galactic latitudes with < 25% contamination fro
We use Gaia DR2 astrometric and line-of-sight velocity information combined with two sets of distances obtained with a Bayesian inference method to study the 3D velocity distribution in the Milky Way disc. We search for variations in all Galactocentr