ترغب بنشر مسار تعليمي؟ اضغط هنا

Discriminating among theories of spiral structure using Gaia DR2

256   0   0.0 ( 0 )
 نشر من قبل Jerry A. Sellwood
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. A. Sellwood




اسأل ChatGPT حول البحث

We compare the distribution in position and velocity of nearby stars from the Gaia DR2 radial velocity sample with predictions of current theories for spirals in disc galaxies. Although the rich substructure in velocity space contains the same information, we find it more revealing to reproject the data into action-angle variables, and we describe why resonant scattering would be more readily identifiable in these variables. We compute the predicted changes to the phase space density, in multiple different projections, that would be caused by a simplified isolated spiral pattern, finding widely differing predictions from each theory. We conclude that the phase space structure present in the Gaia data shares many of the qualitative features expected in the transient spiral mode model. We argue that the popular picture of apparently swing-amplified spirals results from the superposition of a few underlying spiral modes.



قيم البحث

اقرأ أيضاً

We here apply a novel technique selecting quasar candidates purely as sources with zero proper motions in the Gaia data release 2 (DR2). We demonstrate that this approach is highly efficient toward high Galactic latitudes with < 25% contamination fro m stellar sources. Such a selection technique offers a very pure sample completeness, since all cosmological point sources are selected regardless of their intrinsic spectral properties within the limiting magnitude of Gaia. We carry out a pilot-study by defining a sample compiled by including all Gaia-DR2 sources within one degree of the North Galactic Pole (NGP) selected to have proper motions consistent with zero within 2-sigma uncertainty. By cross-matching the sample to the optical Sloan Digital Sky Survey (SDSS) and the mid-infrared AllWISE photometric catalogues we investigate the colours of each of our sources. Together with already spectroscopically confirmed quasars we are therefore able to determine the efficiency of our selection. The majority of the zero proper motion sources have optical to mid-infrared colours consistent with known quasars. The remaining population may be contaminating stellar sources, but some may also be quasars with colours similar to stars. Spectroscopic follow-up of the zero proper motion sources is needed to unveil such a hitherto hidden quasar population. This approach has the potential to allow substantial progress on many important questions concerning quasars such as determining the fraction of dust-obscured quasars, the fraction of broad absorption line (BAL) quasars, and the metallicity distribution of damped Lyman-$alpha$ absorbers. The technique could also potentially reveal new types of quasars or even new classes of cosmological point sources.
135 - Y. Xu , S. B. Bian , M. J. Reid 2018
Context. The Gaia mission has released the second data set (Gaia DR2), which contains parallaxes and proper motions for a large number of massive, young stars. Aims. We investigate the spiral structure in the solar neighborhood revealed by Gaia DR2 a nd compare it with that depicted by VLBI maser parallaxes. Methods. We examined three samples with different constraints on parallax uncertainty and distance errors and stellar spectral types: (1) all OB stars with parallax errors of less than 10%; (2) only O-type stars with 0.1 mas errors imposed and with parallax distance errors of less than 0.2 kpc; and (3) only O-type stars with 0.05 mas errors imposed and with parallax distance errors of less than 0.3 kpc. Results. In spite of the significant distance uncertainties for stars in DR2 beyond 1.4 kpc, the spiral structure in the solar neighborhood demonstrated by Gaia agrees well with that illustrated by VLBI maser results. The O-type stars available from DR2 extend the spiral arm models determined from VLBI maser parallaxes into the fourth Galactic quadrant, and suggest the existence of a new spur between the Local and Sagittarius arms.
Very precise observational data are needed for studying the stellar cluster parameters (distance, reddening, age, metallicity) and cluster internal kinematics. In turn, these give us an insight into the properties of our Galaxy, for example, by givin g us the ability to trace Galactic spiral structure, star formation rates and metallicity gradients. We investigated the available Gaia DR2 catalogue of 1229 open clusters and studied cluster distances, sizes and membership distributions in the 3D space. An appropriate analysis of the parallaxto-distance transformation problem is presented in the context of getting distances toward open clusters and estimating their sizes. Based on our investigation of the Gaia DR2 data we argue that, within 2 kpc, the inverse-parallax method gives comparable results (distances and sizes) as the Bayesian approach based on the exponentially decreasing volume density prior. Both of these methods show very similar dependence of the line-of-sight elongation of clusters (needle-like shapes resulting from the parallax uncertainties) on the distance. We also looked at a measure of elongations of the studied clusters and find the maximum distance of 665 pc at which a spherical fit still contains about half of the stellar population of a cluster. It follows from these results that the 3D structure of an open cluster cannot be properly studied beyond about 500 pc when using any of mentioned standard transformations of parallaxes to distances.
The unprecedented astrometry from Gaia DR2 provides us with an opportunity to study in detail molecular clouds in the solar neighbourhood. Extracting the wealth of information in these data remains a challenge, however. We have further improved our G aussian Processes-based, three-dimensional dust mapping technique to allow us to study molecular clouds in more detail. These improvements include a significantly better scaling of the computational cost with the number of stars, and taking into account distance uncertainties to individual stars. Using Gaia DR2 astrometry together with 2MASS and WISE photometry for 30 000 stars, we infer the distribution of dust out to 600 pc in the direction of the Orion A molecular cloud. We identify a bubble-like structure in front of Orion A, centred at a distance of about 350 pc from the Sun. The main Orion A structure is visible at slightly larger distances, and we clearly see a tail extending over 100 pc that is curved and slightly inclined to the line-of-sight. The location of our foreground structure coincides with 5-10 Myr old stellar populations, suggesting a star formation episode that predates that of the Orion Nebula Cluster itself. We identify also the main structure of the Orion B molecular cloud, and in addition discover a background component to this at a distance of about 460 pc from the Sun. Finally, we associate our dust components at different distances with the plane-of-the-sky magnetic field orientation as mapped by Planck. This provides valuable information for modelling the magnetic field in 3D around star forming regions.
Using data from Gaia DR2, we study the radial number density profiles of the Galactic globular cluster sample. Proper motions are used for accurate membership selection, especially crucial in the cluster outskirts. Due to the severe crowding in the c entres, the Gaia data is supplemented by literature data from HST and surface brightness measurements, where available. This results in 81 clusters with a complete density profile covering the full tidal radius (and beyond) for each cluster. We model the density profiles using a set of single-mass models ranging from King and Wilson models to generalised lowered isothermal limepy models and the recently introduced spes models, which allow for the inclusion of potential escapers. We find that both King and Wilson models are too simple to fully reproduce the density profiles, with King (Wilson) models on average underestimating(overestimating) the radial extent of the clusters. The truncation radii derived from the limepy models are similar to estimates for the Jacobi radii based on the cluster masses and their orbits. We show clear correlations between structural and environmental parameters, as a function of Galactocentric radius and integrated luminosity. Notably, the recovered fraction of potential escapers correlates with cluster pericentre radius, luminosity and cluster concentration. The ratio of half mass over Jacobi radius also correlates with both truncation parameter and PE fraction, showing the effect of Roche lobe filling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا