ﻻ يوجد ملخص باللغة العربية
Symbol alphabets of n-particle amplitudes in N=4 super-Yang-Mills theory are known to contain certain cluster variables of Gr(4,n) as well as certain algebraic functions of cluster variables. In this paper we suggest an algorithm for computing these symbol alphabets from plabic graphs by solving matrix equations of the form C Z = 0 to associate functions on Gr(m,n) to parameterizations of certain cells of Gr(k,n) indexed by plabic graphs. For m=4 and n=8 we show that this association precisely reproduces the 18 algebraic symbol letters of the two-loop NMHV eight-point amplitude from four plabic graphs.
Symbol alphabets of n-particle amplitudes in N=4 super-Yang-Mills theory are known to contain certain cluster variables of Gr(4,n) as well as certain algebraic functions of cluster variables. The first paper arXiv:2007.00646 in this series focused on
Symbol alphabets of n-particle amplitudes in N=4 super-Yang-Mills theory are known to contain certain cluster variables of Gr(4,n) as well as certain algebraic functions of cluster variables. In this paper we solve the C Z = 0 matrix equations associ
We propose to use tensor diagrams and the Fomin-Pylyavskyy conjectures to explore the connection between symbol alphabets of $n$-particle amplitudes in planar $mathcal{N}=4$ Yang-Mills theory and certain polytopes associated to the Grassmannian G(4,
It is widely expected that NMHV amplitudes in planar, maximally supersymmetric Yang-Mills theory require symbol letters that are not rationally expressible in terms of momentum-twistor (or cluster) variables starting at two loops for eight particles.
Planar bicolored (plabic) graphs are combinatorial objects introduced by Postnikov to give parameterizations of the positroid cells of the totally nonnegative Grassmannian $text{Gr}^{geq 0}(n,k)$. Any two plabic graphs for the same positroid cell can