ترغب بنشر مسار تعليمي؟ اضغط هنا

Flip cycles in plabic graphs

104   0   0.0 ( 0 )
 نشر من قبل Julian Wellman
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Planar bicolored (plabic) graphs are combinatorial objects introduced by Postnikov to give parameterizations of the positroid cells of the totally nonnegative Grassmannian $text{Gr}^{geq 0}(n,k)$. Any two plabic graphs for the same positroid cell can be related by a sequence of certain moves. The flip graph has plabic graphs as vertices and has edges connecting the plabic graphs which are related by a single move. A recent result of Galashin shows that plabic graphs can be seen as cross-sections of zonotopal tilings for the cyclic zonotope $Z(n,3)$. Taking this perspective, we show that the fundamental group of the flip graph is generated by cycles of length 4, 5, and 10, and use this result to prove a related conjecture of Dylan Thurston about triple crossing diagrams. We also apply our result to make progress on an instance of the generalized Baues problem.



قيم البحث

اقرأ أيضاً

Tuza [1992] proved that a graph with no cycles of length congruent to $1$ modulo $k$ is $k$-colorable. We prove that if a graph $G$ has an edge $e$ such that $G-e$ is $k$-colorable and $G$ is not, then for $2leq rleq k$, the edge $e$ lies in at least $prod_{i=1}^{r-1}(k-i)$ cycles of length $1mod r$ in $G$, and $G-e$ contains at least $frac{1}{2}prod_{i=1}^{r-1}(k-i)$ cycles of length $0 mod r$. A $(k,d)$-coloring of $G$ is a homomorphism from $G$ to the graph $K_{k:d}$ with vertex set $mathbb{Z}_{k}$ defined by making $i$ and $j$ adjacent if $dleq j-i leq k-d$. When $k$ and $d$ are relatively prime, define $s$ by $sdequiv 1mod k$. A result of Zhu [2002] implies that $G$ is $(k,d)$-colorable when $G$ has no cycle $C$ with length congruent to $is$ modulo $k$ for any $iin {1,ldots,2d-1}$. In fact, only $d$ classes need be excluded: we prove that if $G-e$ is $(k,d)$-colorable and $G$ is not, then $e$ lies in at least one cycle with length congruent to $ismod k$ for some $i$ in ${1,ldots,d}$. Furthermore, if this does not occur with $iin{1,ldots,d-1}$, then $e$ lies in at least two cycles with length $1mod k$ and $G-e$ contains a cycle of length $0 mod k$.
It is known that the coordinate ring of the Grassmannian has a cluster structure, which is induced from the combinatorial structure of a plabic graph. A plabic graph is a certain bipartite graph described on the disk, and there is a family of plabic graphs giving a cluster structure of the same Grassmannian. Such plabic graphs are related by the operation called square move which can be considered as the mutation in cluster theory. By using a plabic graph, we also obtain the Newton-Okounkov polytope which gives a toric degeneration of the Grassmannian. The purposes of this article is to survey these phenomena and observe the behavior of Newton-Okounkov polytopes under the operation called the combinatorial mutation of polytopes. In particular, we reinterpret some operations defined for Newton-Okounkov polytopes using the combinatorial mutation.
Given an $n$ vertex graph whose edges have colored from one of $r$ colors $C={c_1,c_2,ldots,c_r}$, we define the Hamilton cycle color profile $hcp(G)$ to be the set of vectors $(m_1,m_2,ldots,m_r)in [0,n]^r$ such that there exists a Hamilton cycle th at is the concatenation of $r$ paths $P_1,P_2,ldots,P_r$, where $P_i$ contains $m_i$ edges. We study $hcp(G_{n,p})$ when the edges are randomly colored. We discuss the profile close to the threshold for the existence of a Hamilton cycle and the threshold for when $hcp(G_{n,p})={(m_1,m_2,ldots,m_r)in [0,n]^r:m_1+m_2+cdots+m_r=n}$.
89 - Richard Montgomery 2021
We show that, in almost every $n$-vertex random directed graph process, a copy of every possible $n$-vertex oriented cycle will appear strictly before a directed Hamilton cycle does, except of course for the directed cycle itself. Furthermore, given an arbitrary $n$-vertex oriented cycle, we determine the sharp threshold for its appearance in the binomial random directed graph. These results confirm, in a strong form, a conjecture of Ferber and Long.
We introduce a notion of the emph{crux} of a graph $G$, measuring the order of a smallest dense subgraph in $G$. This simple-looking notion leads to some generalisations of known results about cycles, offering an interesting paradigm of `replacing av erage degree by crux. In particular, we prove that emph{every} graph contains a cycle of length linear in its crux. Long proved that every subgraph of a hypercube $Q^m$ (resp. discrete torus $C_3^m$) with average degree $d$ contains a path of length $2^{d/2}$ (resp. $2^{d/4}$), and conjectured that there should be a path of length $2^{d}-1$ (resp. $3^{d/2}-1$). As a corollary of our result, together with isoperimetric inequalities, we close these exponential gaps giving asymptotically optimal bounds on long paths in hypercubes, discrete tori, and more generally Hamming graphs. We also consider random subgraphs of $C_4$-free graphs and hypercubes, proving near optimal bounds on lengths of long cycles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا