ﻻ يوجد ملخص باللغة العربية
Planar bicolored (plabic) graphs are combinatorial objects introduced by Postnikov to give parameterizations of the positroid cells of the totally nonnegative Grassmannian $text{Gr}^{geq 0}(n,k)$. Any two plabic graphs for the same positroid cell can be related by a sequence of certain moves. The flip graph has plabic graphs as vertices and has edges connecting the plabic graphs which are related by a single move. A recent result of Galashin shows that plabic graphs can be seen as cross-sections of zonotopal tilings for the cyclic zonotope $Z(n,3)$. Taking this perspective, we show that the fundamental group of the flip graph is generated by cycles of length 4, 5, and 10, and use this result to prove a related conjecture of Dylan Thurston about triple crossing diagrams. We also apply our result to make progress on an instance of the generalized Baues problem.
Tuza [1992] proved that a graph with no cycles of length congruent to $1$ modulo $k$ is $k$-colorable. We prove that if a graph $G$ has an edge $e$ such that $G-e$ is $k$-colorable and $G$ is not, then for $2leq rleq k$, the edge $e$ lies in at least
It is known that the coordinate ring of the Grassmannian has a cluster structure, which is induced from the combinatorial structure of a plabic graph. A plabic graph is a certain bipartite graph described on the disk, and there is a family of plabic
Given an $n$ vertex graph whose edges have colored from one of $r$ colors $C={c_1,c_2,ldots,c_r}$, we define the Hamilton cycle color profile $hcp(G)$ to be the set of vectors $(m_1,m_2,ldots,m_r)in [0,n]^r$ such that there exists a Hamilton cycle th
We show that, in almost every $n$-vertex random directed graph process, a copy of every possible $n$-vertex oriented cycle will appear strictly before a directed Hamilton cycle does, except of course for the directed cycle itself. Furthermore, given
We introduce a notion of the emph{crux} of a graph $G$, measuring the order of a smallest dense subgraph in $G$. This simple-looking notion leads to some generalisations of known results about cycles, offering an interesting paradigm of `replacing av