ﻻ يوجد ملخص باللغة العربية
It is widely expected that NMHV amplitudes in planar, maximally supersymmetric Yang-Mills theory require symbol letters that are not rationally expressible in terms of momentum-twistor (or cluster) variables starting at two loops for eight particles. Recent advances in loop integration technology have made this an `experimentally testable hypothesis: compute the amplitude at some kinematic point, and see if algebraic symbol letters arise. We demonstrate the feasibility of such a test by directly integrating the most difficult of the two-loop topologies required. This integral, together with its rotated image, suffices to determine the simplest NMHV component amplitude: the unique component finite at this order. Although each of these integrals involve algebraic symbol alphabets, the combination contributing to this amplitude is---surprisingly---rational. We describe the steps involved in this analysis, which requires several novel tricks of loop integration and also a considerable degree of algebraic number theory. We find dramatic and unusual simplifications, in which the two symbols initially expressed as almost ten million terms in over two thousand letters combine in a form that can be written in five thousand terms and twenty-five letters.
Symbol alphabets of n-particle amplitudes in N=4 super-Yang-Mills theory are known to contain certain cluster variables of Gr(4,n) as well as certain algebraic functions of cluster variables. The first paper arXiv:2007.00646 in this series focused on
Symbol alphabets of n-particle amplitudes in N=4 super-Yang-Mills theory are known to contain certain cluster variables of Gr(4,n) as well as certain algebraic functions of cluster variables. In this paper we suggest an algorithm for computing these
We propose to use tensor diagrams and the Fomin-Pylyavskyy conjectures to explore the connection between symbol alphabets of $n$-particle amplitudes in planar $mathcal{N}=4$ Yang-Mills theory and certain polytopes associated to the Grassmannian G(4,
Symbol alphabets of n-particle amplitudes in N=4 super-Yang-Mills theory are known to contain certain cluster variables of Gr(4,n) as well as certain algebraic functions of cluster variables. In this paper we solve the C Z = 0 matrix equations associ
We propose that the symbol alphabet for classes of planar, dual-conformal-invariant Feynman integrals can be obtained as truncated cluster algebras purely from their kinematics, which correspond to boundaries of (compactifications of) $G_+(4,n)/T$ fo