ﻻ يوجد ملخص باللغة العربية
This paper focuses on estimating probability distributions over the set of 3D rotations ($SO(3)$) using deep neural networks. Learning to regress models to the set of rotations is inherently difficult due to differences in topology between $mathbb{R}^N$ and $SO(3)$. We overcome this issue by using a neural network to output the parameters for a matrix Fisher distribution since these parameters are homeomorphic to $mathbb{R}^9$. By using a negative log likelihood loss for this distribution we get a loss which is convex with respect to the network outputs. By optimizing this loss we improve state-of-the-art on several challenging applicable datasets, namely Pascal3D+, ModelNet10-$SO(3)$ and UPNA head pose.
Fisher forecasts are a common tool in cosmology with applications ranging from survey planning to the development of new cosmological probes. While frequently adopted, they are subject to numerical instabilities that need to be carefully investigated
Canonical Correlation Analysis (CCA) is a classic technique for multi-view data analysis. To overcome the deficiency of linear correlation in practical multi-view learning tasks, various CCA variants were proposed to capture nonlinear dependency. How
Statistical models of real world data typically involve continuous probability distributions such as normal, Laplace, or exponential distributions. Such distributions are supported by many probabilistic modelling formalisms, including probabilistic d
The Fisher Information Matrix (FIM) has been the standard approximation to the accuracy of parameter estimation on gravitational-wave signals from merging compact binaries due to its ease-of-use and rapid computation time. While the theoretical faili
Diffusion magnetic resonance imaging (dMRI) is currently the only tool for noninvasively imaging the brains white matter tracts. The fiber orientation (FO) is a key feature computed from dMRI for fiber tract reconstruction. Because the number of FOs