ﻻ يوجد ملخص باللغة العربية
Statistical models of real world data typically involve continuous probability distributions such as normal, Laplace, or exponential distributions. Such distributions are supported by many probabilistic modelling formalisms, including probabilistic database systems. Yet, the traditional theoretical framework of probabilistic databases focusses entirely on finite probabilistic databases. Only recently, we set out to develop the mathematical theory of infinite probabilistic databases. The present paper is an exposition of two recent papers which are cornerstones of this theory. In (Grohe, Lindner; ICDT 2020) we propose a very general framework for probabilistic databases, possibly involving continuous probability distributions, and show that queries have a well-defined semantics in this framework. In (Grohe, Kaminski, Katoen, Lindner; PODS 2020) we extend the declarative probabilistic programming language Generative Datalog, proposed by (Barany et al.~2017) for discrete probability distributions, to continuous probability distributions and show that such programs yield generative models of continuous probabilistic databases.
Arguing for the need to combine declarative and probabilistic programming, Barany et al. (TODS 2017) recently introduced a probabilistic extension of Datalog as a purely declarative probabilistic programming language. We revisit this language and pro
We study termination of higher-order probabilistic functional programs with recursion, stochastic conditioning and sampling from continuous distributions. Reasoning about the termination probability of programs with continuous distributions is hard
Interactive data visualization and exploration (DVE) applications are often network-bottlenecked due to bursty request patterns, large response sizes, and heterogeneous deployments over a range of networks and devices. This makes it difficult to ensu
Canonical Correlation Analysis (CCA) is a classic technique for multi-view data analysis. To overcome the deficiency of linear correlation in practical multi-view learning tasks, various CCA variants were proposed to capture nonlinear dependency. How
Probabilistic databases play a crucial role in the management and understanding of uncertain data. However, incorporating probabilities into the semantics of incomplete databases has posed many challenges, forcing systems to sacrifice modeling power,