ﻻ يوجد ملخص باللغة العربية
Diffusion magnetic resonance imaging (dMRI) is currently the only tool for noninvasively imaging the brains white matter tracts. The fiber orientation (FO) is a key feature computed from dMRI for fiber tract reconstruction. Because the number of FOs in a voxel is usually small, dictionary-based sparse reconstruction has been used to estimate FOs with a relatively small number of diffusion gradients. However, accurate FO estimation in regions with complex FO configurations in the presence of noise can still be challenging. In this work we explore the use of a deep network for FO estimation in a dictionary-based framework and propose an algorithm named Fiber Orientation Reconstruction guided by a Deep Network (FORDN). FORDN consists of two steps. First, we use a smaller dictionary encoding coarse basis FOs to represent the diffusion signals. To estimate the mixture fractions of the dictionary atoms (and thus coarse FOs), a deep network is designed specifically for solving the sparse reconstruction problem. Here, the smaller dictionary is used to reduce the computational cost of training. Second, the coarse FOs inform the final FO estimation, where a larger dictionary encoding dense basis FOs is used and a weighted l1-norm regularized least squares problem is solved to encourage FOs that are consistent with the network output. FORDN was evaluated and compared with state-of-the-art algorithms that estimate FOs using sparse reconstruction on simulated and real dMRI data, and the results demonstrate the benefit of using a deep network for FO estimation.
Vehicle re-identification (re-ID) focuses on matching images of the same vehicle across different cameras. It is fundamentally challenging because differences between vehicles are sometimes subtle. While several studies incorporate spatial-attention
In this paper, we address the challenging problem of crowd counting in congested scenes. Specifically, we present Inverse Attention Guided Deep Crowd Counting Network (IA-DCCN) that efficiently infuses segmentation information through an inverse atte
Diffusion magnetic resonance imaging (dMRI) provides a unique tool for noninvasively probing the microstructure of the neuronal tissue. The NODDI model has been a popular approach to the estimation of tissue microstructure in many neuroscience studie
Automatic designing computationally efficient neural networks has received much attention in recent years. Existing approaches either utilize network pruning or leverage the network architecture search methods. This paper presents a new framework nam
Multi-frame human pose estimation in complicated situations is challenging. Although state-of-the-art human joints detectors have demonstrated remarkable results for static images, their performances come short when we apply these models to video seq