ﻻ يوجد ملخص باللغة العربية
The frustrated q-state Potts model is solved exactly on a hierarchical lattice, yielding chaos under rescaling, namely the signature of a spin-glass phase, as previously seen for the Ising (q=2) model. However, the ground-state entropy introduced by the (q>2)-state antiferromagnetic Potts bond induces an escape from chaos as multiplicity q increases. The frustration versus multiplicity phase diagram has a reentrant (as a function of frustration) chaotic phase.
Any two-dimensional infinite regular lattice G can be produced by tiling the plane with a finite subgraph B of G; we call B a basis of G. We introduce a two-parameter graph polynomial P_B(q,v) that depends on B and its embedding in G. The algebraic c
The scaling limit of the spin cluster boundaries of the Ising model with domain wall boundary conditions is SLE with kappa=3. We hypothesise that the three-state Potts model with appropriate boundary conditions has spin cluster boundaries which are a
The spin-1/2 Ising-Heisenberg model on diamond-like decorated Bethe lattices is exactly solved with the help of decoration-iteration transformation and exact recursion relations. It is shown that the model under investigation exhibits reentrant phase
The hamiltonian of the $N$-state superintegrable chiral Potts (SICP) model is written in terms of a coupled algebra defined by $N-1$ types of Temperley-Lieb generators. This generalises a previous result for $N=3$ obtained by J. F. Fjelstad and T. Mr
We investigate a 4-state ferromagnetic Potts model with a special type of geometrical frustration on a three dimensional diamond lattice by means of Wang-Landau Monte Carlo simulation motivated by a peculiar structural phase transition found in $beta