ﻻ يوجد ملخص باللغة العربية
We investigate a 4-state ferromagnetic Potts model with a special type of geometrical frustration on a three dimensional diamond lattice by means of Wang-Landau Monte Carlo simulation motivated by a peculiar structural phase transition found in $beta$-pyrochlore oxide KOs$_2$O$_6$. We find that this model undergoes unconventional first-order phase transition; half of the spins in the system order in a two dimensional hexagonal-sheet-like structure, while the remaining half stay disordered. The ordered sheets and the disordered sheets stack one after another. We obtain a fairly large residual entropy at $T = 0$ which originates from the disordered sheets.
The frustrated q-state Potts model is solved exactly on a hierarchical lattice, yielding chaos under rescaling, namely the signature of a spin-glass phase, as previously seen for the Ising (q=2) model. However, the ground-state entropy introduced by
Using large-scale numerical simulations we studied the kinetics of the 2d q-Potts model for q > 4 after a shallow subcritical quench from a high-temperature homogeneous configuration. This protocol drives the system across a first-order phase transit
The scaling limit of the spin cluster boundaries of the Ising model with domain wall boundary conditions is SLE with kappa=3. We hypothesise that the three-state Potts model with appropriate boundary conditions has spin cluster boundaries which are a
A hybrid Potts model where a random concentration $p$ of the spins assume $q_0$ states and a random concentration $1-p$ of the spins assume $q>q_0$ states is introduced. It is known that when the system is homogeneous, with an integer spin number $q_
The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the top