ترغب بنشر مسار تعليمي؟ اضغط هنا

A coupled Temperley-Lieb algebra for the superintegrable chiral Potts chain

116   0   0.0 ( 0 )
 نشر من قبل Murray Batchelor
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The hamiltonian of the $N$-state superintegrable chiral Potts (SICP) model is written in terms of a coupled algebra defined by $N-1$ types of Temperley-Lieb generators. This generalises a previous result for $N=3$ obtained by J. F. Fjelstad and T. Mr{a}nsson [J. Phys. A {bf 45} (2012) 155208]. A pictorial representation of a related coupled algebra is given for the $N=3$ case which involves a generalisation of the pictorial presentation of the Temperley-Lieb algebra to include a pole around which loops can become entangled. For the two known representations of this algebra, the $N=3$ SICP chain and the staggered spin-1/2 XX chain, closed (contractible) loops have weight $sqrt{3}$ and weight $2$, respectively. For both representations closed (non-contractible) loops around the pole have weight zero. The pictorial representation provides a graphical interpretation of the algebraic relations. A key ingredient in the resolution of diagrams is a crossing relation for loops encircling a pole which involves the parameter $rho= e^{ 2pi mathrm{i}/3}$ for the SICP chain and $rho=1$ for the staggered XX chain. These $rho$ values are derived assuming the Kauffman bracket skein relation.



قيم البحث

اقرأ أيضاً

In previous work with Scullard, we defined a graph polynomial P_B(q,T) that gives access to the critical temperature T_c of the q-state Potts model on a general two-dimensional lattice L. It depends on a basis B, containing n x m unit cells of L, and the relevant root of P_B(q,T) was observed to converge quickly to T_c in the limit n,m to infinity. Moreover, in exactly solvable cases there is no finite-size dependence at all. We reformulate this method as an eigenvalue problem within the periodic Temperley-Lieb algebra. This corresponds to taking m to infinity first, so the bases B are semi-infinite cylinders of circumference n. The limit implies faster convergence in n, while maintaining the n-independence in exactly solvable cases. In this setup, T_c(n) is determined by equating the largest eigenvalues of two topologically distinct sectors of the transfer matrix. Crucially, these two sectors determine the same critical exponent in the continuum limit, and the observed fast convergence is thus corroborated by results of conformal field theory. We obtain similar results for the dense and dilute phases of the O(N) loop model, using now a transfer matrix within the dilute periodic Temperley-Lieb algebra. The eigenvalue formulation allows us to double the size n for which T_c(n) can be obtained, using the same computational effort. We study in details three significant cases: (i) bond percolation on the kagome lattice, up to n = 14; (ii) site percolation on the square lattice, to n = 21; and (iii) self-avoiding polygons on the square lattice, to n = 19. Convergence properties of T_c(n) and extrapolation schemes are studied in details for the first two cases. This leads to rather accurate values for the percolation thresholds: p_c = 0.524404999167439(4) for bond percolation on the kagome lattice, and p_c = 0.59274605079210(2) for site percolation on the square lattice.
203 - C.-L. Ho , A.I. Solomon , C.-H.Oh 2010
Important developments in fault-tolerant quantum computation using the braiding of anyons have placed the theory of braid groups at the very foundation of topological quantum computing. Furthermore, the realization by Kauffman and Lomonaco that a spe cific braiding operator from the solution of the Yang-Baxter equation, namely the Bell matrix, is universal implies that in principle all quantum gates can be constructed from braiding operators together with single qubit gates. In this paper we present a new class of braiding operators from the Temperley-Lieb algebra that generalizes the Bell matrix to multi-qubit systems, thus unifying the Hadamard and Bell matrices within the same framework. Unlike previous braiding operators, these new operators generate {it directly}, from separable basis states, important entangled states such as the generalized Greenberger-Horne-Zeilinger states, cluster-like states, and other states with varying degrees of entanglement.
75 - C.-L. Ho , T. Deguchi 2016
Using a braid group representation based on the Temperley-Lieb algebra, we construct braid quantum gates that could generate entangled $n$-partite $D$-level qudit states. $D$ different sets of $D^ntimes D^n$ unitary representation of the braid group generators are presented. With these generators the desired braid quantum gates are obtained. We show that the generalized GHZ states, which are maximally entangled states, can be obtained directly from these braid quantum gates without resorting to further local unitary transformations. We also point out an interesting observation, namely for a general multi-qudit state there exists a unitary braid quantum gate based on the Temperley-Lieb algebra that connects it from one of its component basis states, if the coefficient of the component state is such that the square of its norm is no less than $1/4$.
We present a method of defining projectors in the virtual Temperley-Lieb algebra, that generalizes the Jones-Wenzl projectors in Temperley-Lieb algebra. We show that the projectors have similar properties with the Jones-Wenzl projectors, and contain an extra property which is associated with the virtual generator elements, that is, the product of a projector with a virtual generator is unchanged. We also show the uniqueness of the projector $f_n$ in terms of its axiomatic properties in the virtual Temperley-Lieba algebra $VTL_n(d)$. Finally, we find the coefficients of $f_n$ and give an explicit formula for the projector $f_n$.
288 - Adam Gamsa , John Cardy 2007
The scaling limit of the spin cluster boundaries of the Ising model with domain wall boundary conditions is SLE with kappa=3. We hypothesise that the three-state Potts model with appropriate boundary conditions has spin cluster boundaries which are a lso SLE in the scaling limit, but with kappa=10/3. To test this, we generate samples using the Wolff algorithm and test them against predictions of SLE: we examine the statistics of the Loewner driving function, estimate the fractal dimension and test against Schramms formula. The results are in support of our hypothesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا