ﻻ يوجد ملخص باللغة العربية
Selective solar absorbers (SSAs) with high performance are the key to concentrated solar power systems. Optical metamaterials are emerging as a promising strategy to enhance selective photon absorption, however, the high-temperature resistance (>500C) remains as one of the main challenges for their practical applications. Here, a multilayered metamaterial system (Al2O3/W/SiO2/W) based on metal-insulator-metal (MIM) resonance effect has been demonstrated with high solar absorptance over 92%, low thermal emittance loss below 6%, and significant high-temperature resistance: it has been proved that the optical performance remains 93.6% after 1-hour thermal annealing under ambient environment up to 500C, and 94.1% after 96-hour thermal cycle test at 400C, which is also confirmed by the microscopic morphology characterization. The spectral selectivity of fabricated SSAs is angular independent and polarization insensitive. Outdoor tests demonstrate that a peak temperature rise (193.5C) can be achieved with unconcentrated solar irradiance and surface abrasion resistance test yields that SSAs have a robust resistance to abrasion attack for engineering applications.
It is of significance to incorporate spectral selectivity technology into solar thermal engineering, especially at high operational temperatures. This work demonstrates spectrally selective solar absorbers made of multilayer tungsten, silica, and alu
A galvanic displacement reaction-based, room-temperature dip-and-dry technique is demonstrated for fabricating selectively solar-absorbing plasmonic nanostructure-coated foils (PNFs). The technique, which allows for facile tuning of the PNFs spectral
The superconductivities of samples prepared by several procedures were found to degrade under ambient environment. The degradation mechanism was studied by measuring the change of surface chemical composition of dense MgB2 pellets (prepared by hot is
A polarization-independent reconfigurable frequency selective rasorber (FSR)/absorber with low insertion loss based on diodes is proposed in this paper. The presented structure consists of a lossy layer based on square loops and a bandpass frequency-
Power-conversion efficiency is a critical factor for the wider adoption of solar-cell modules. Thin-film solar cells are cheap and easy to manufacture, but their efficiencies are low compared to crystalline-silicon solar cells and need to be improved