ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable, Dip-and-dry Fabrication of a Wide-Angle Plasmonic Selective Absorber for High-efficiency Solar-Thermal Energy Conversion

91   0   0.0 ( 0 )
 نشر من قبل Jyotirmoy Mandal
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A galvanic displacement reaction-based, room-temperature dip-and-dry technique is demonstrated for fabricating selectively solar-absorbing plasmonic nanostructure-coated foils (PNFs). The technique, which allows for facile tuning of the PNFs spectral reflectance to suit different radiative and thermal environments, yields PNFs which exhibit excellent, wide-angle solar absorptance (0.96 at 15{deg}, to 0.97 at 35{deg}, to 0.79 at 80{deg}) and low hemispherical thermal emittance (0.10) without the aid of antireflection coatings. The thermal emittance is on par with those of notable selective solar absorbers (SSAs) in the literature, while the wide-angle solar absorptance surpasses those of previously reported SSAs with comparable optical selectivities. In addition, the PNFs show promising mechanical and thermal stabilities at temperatures of up to 200{deg}C. Along with the performance of the PNFs, the simplicity, inexpensiveness and environment-friendliness of the dip-and-dry technique makes it an appealing alternative to current methods for fabricating selective solar absorbers.



قيم البحث

اقرأ أيضاً

Selective solar absorbers (SSAs) with high performance are the key to concentrated solar power systems. Optical metamaterials are emerging as a promising strategy to enhance selective photon absorption, however, the high-temperature resistance (>500C ) remains as one of the main challenges for their practical applications. Here, a multilayered metamaterial system (Al2O3/W/SiO2/W) based on metal-insulator-metal (MIM) resonance effect has been demonstrated with high solar absorptance over 92%, low thermal emittance loss below 6%, and significant high-temperature resistance: it has been proved that the optical performance remains 93.6% after 1-hour thermal annealing under ambient environment up to 500C, and 94.1% after 96-hour thermal cycle test at 400C, which is also confirmed by the microscopic morphology characterization. The spectral selectivity of fabricated SSAs is angular independent and polarization insensitive. Outdoor tests demonstrate that a peak temperature rise (193.5C) can be achieved with unconcentrated solar irradiance and surface abrasion resistance test yields that SSAs have a robust resistance to abrasion attack for engineering applications.
Optical properties of core-shell-shell Au@SiO2@Au nanostructures and their solar energy harvesting applications are theoretically investigated using Mie theory and heat transfer equations. The theoretical analysis associated with size-dependent modif ication of the bulk gold dielectric function agrees well with previous experimental results. We use the appropriate absorption cross-section to determine the solar energy absorption efficiency of the nano-heterostructures, which is strongly structure-dependent, and to predict the time-dependent temperature increase of the nanoshell solution under simulated solar irradiation. Comparisons to prior temperature measurements and theoretical evaluation of the solar power conversion efficiency are discussed to provide new insights into underlying mechanisms. Our approach would accelerate materials and structure testing in solar energy harvesting.
Space Division Multiplexing (SMD) is a very attractive technique for addressing the ever-growing demands in transmission capacity by enabling the use of a new parameter textemdash space textemdash to increase the number of channels in multi-mode fibe rs. One key component to build a spatially multiplexed-based optical network is a spatial multiplexer and demultiplexer combining signals from multiple single-mode fibers into as many channels in a multi-mode fiber. In this article, we report the fabrication and characterization of a pair of 45-mode spatial multiplexer and demultiplexer saturating all the modes of a standard 50~$mu$m core graded-index (OM2) multi-mode fiber. The multiplexers are based on Multi-Plane Light Conversion (MPLC), a technique that enables the control of the transverse shape of the light by multiple reflections on specifically designed phase plates. We show that by using a separable variable basis of modes, such as Hermite-Gaussian (HG) modes, we are able to drastically reduce the number of reflections hence reducing the insertion losses and modal crosstalks. The multiplexers typically show an average 4~dB insertion loss and -28~dB cross-talk across the C band. Finally, we emphasize the use of this higher-order modes multiplexer to explore the propagation properties inside multi-mode fibers and more specifically the mode group crosstalks as well as the impact of fiber bending.
Power-conversion efficiency is a critical factor for the wider adoption of solar-cell modules. Thin-film solar cells are cheap and easy to manufacture, but their efficiencies are low compared to crystalline-silicon solar cells and need to be improved . A thin-film solar cell with two absorber layers (instead of only one), with bandgap energy graded in both, can capture solar photons in a wider spectral range. With a 300-nm-thick CIGS~absorber layer and an 870-nm-thick CZTSSe~absorber layer, an efficiency of $34.45%$ is predicted by a detailed optoelectronic model, provided that the grading of bandgap energy is optimal in both absorber layers.
We propose a solar thermal energy conversion system consisting of a solar absorber, a thermoradiative cell or negative illumination photodiode, and a photovoltaic cell. Because it is a heat engine, this system can also be paired with thermal storage to provide reliable electricity generation. Heat from the solar absorber drives radiative recombination current in the thermoradiative cell, and its emitted light is absorbed by the photovoltaic cell to provide an additional photocurrent. Based on the principle of detailed balance, we calculate a limiting solar conversion efficiency of 85% for fully concentrated sunlight and 45% for one sun with an absorber and single-junction cells of equal areas. Ideal and nonideal solar thermoradiative-photovoltaic systems outperform solar thermophotovoltaic converters for low bandgaps and practical absorber temperatures. Their performance enhancement results from a high tolerance to nonradiative generation/recombination and an ability to minimize radiative heat losses. We show that a realistic device with all major losses could achieve increases in solar conversion efficiency by up to 7.9% (absolute) compared to a solar thermophotovoltaic device under low optical concentration. Our results indicate that these converters could serve as efficient heat engines for low cost single axis tracking systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا