ﻻ يوجد ملخص باللغة العربية
In the era of precision cosmology, establishing the correct magnitude of statistical errors in cosmological parameters is of crucial importance. However, widely used approximations in galaxy surveys analyses can lead to parameter uncertainties that are grossly mis-estimated, even in a regime where the theory is well understood (e.g., linear scales). These approximations can be introduced at three different levels: in the form of the likelihood, in the theoretical modelling of the observable and in the numerical computation of the observable. Their consequences are important both in data analysis through e.g., Markov Chain Monte Carlo parameter inference, and when survey instrument and strategy are designed and their constraining power on cosmological parameters is forecasted, for instance using Fisher matrix analyses. In this work, considering the galaxy angular power spectrum as the target observable, we report one example of approximation for each of such three categories: neglecting off-diagonal terms in the covariance matrix, neglecting cosmic magnification and using the Limber approximation on large scales. We show that these commonly used approximations affect the robustness of the analysis and lead, perhaps counter-intuitively, to unacceptably large mis-estimates of parameters errors (from few~$10%$ up to few~$100%$) and correlations. Furthermore, these approximations might even spoil the benefits of the nascent multi-tracer and multi-messenger cosmology. Hence we recommend that the type of analysis presented here should be repeated for every approximation adopted in survey design or data analysis, to quantify how it may affect the results. To this aim, we have developed texttt{Multi_CLASS}, a new extension of texttt{CLASS} that includes the angular power spectrum for multiple (galaxy and other tracers such as gravitational waves) populations.
Cosmological parameter estimation from forthcoming experiments promise to reach much greater precision than current constraints. As statistical errors shrink, the required control over systematic errors increases. Therefore, models or approximations
We study a hundred of galaxies from the spectroscopic Sloan Digital Sky Survey with individual detections in the Far-Infrared Herschel PACS bands (100 or 160 $mu$m) and in the GALEX Far-UltraViolet band up to z$sim$0.4 in the COSMOS and Lockman Hole
Based on a panel discussion at the meeting New Light on Young Stars: Spitzers View of Circumstellar Disks, we provide some definitions of common usage of terms describing disks and related objects.
We construct forecasts for cosmological parameter constraints from weak gravitational lensing surveys involving the Square Kilometre Array (SKA). Considering matter content, dark energy and modified gravity parameters, we show that the first phase of
We present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT