ﻻ يوجد ملخص باللغة العربية
We study a hundred of galaxies from the spectroscopic Sloan Digital Sky Survey with individual detections in the Far-Infrared Herschel PACS bands (100 or 160 $mu$m) and in the GALEX Far-UltraViolet band up to z$sim$0.4 in the COSMOS and Lockman Hole fields. The galaxies are divided into 4 spectral and 4 morphological types. For the star forming and unclassifiable galaxies we calculate dust extinctions from the UV slope, the H$alpha$/H$beta$ ratio and the $L_{rm IR}/L_{rm UV}$ ratio. There is a tight correlation between the dust extinction and both $L_{rm IR}$ and metallicity. We calculate SFR$_{total}$ and compare it with other SFR estimates (H$alpha$, UV, SDSS) finding a very good agreement between them with smaller dispersions than typical SFR uncertainties. We study the effect of mass and metallicity, finding that it is only significant at high masses for SFR$_{Halpha}$. For the AGN and composite galaxies we find a tight correlation between SFR and L$_{IR}$ ($sigmasim$0.29), while the dispersion in the SFR - L$_{UV}$ relation is larger ($sigmasim$0.57). The galaxies follow the prescriptions of the Fundamental Plane in the M-Z-SFR space.
We study the spatially resolved Radio Continuum-Star Formation Rate (RC-SFR) relation using state-of-the-art star-formation (SF) tracers in a sample of 17 THINGS galaxies. We use hybrid Sigma_SFR maps (GALEX FUV plus Spitzer 24 mu), RC maps at 22/18
We use the James Clerk Maxwell Telescopes SCUBA-2 camera to image a 400 arcmin^2 area surrounding the GOODS-N field. The 850 micron rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we co
We present a statistical detection of 1.5 GHz radio continuum emission from a sample of faint z~4 Lyman-break galaxies (LBGs). LBGs are key tracers of the high-redshift star formation history and important sources of UV photons that ionized the inter
We present a new suite of hydrodynamical simulations and use it to study, in detail, black hole and galaxy properties. The high time, spatial and mass resolution, and realistic orbits and mass ratios, down to 1:6 and 1:10, enable us to meaningfully c
The star formation rate (SFR) of the Milky Way remains poorly known, with often-quoted values ranging from 1 to 10 solar masses per year. This situation persists despite the potential for the Milky Way to serve as the ultimate SFR calibrator for exte