ترغب بنشر مسار تعليمي؟ اضغط هنا

Imaging and spectral study on the null point of a fan-spine structure during a solar flare

60   0   0.0 ( 0 )
 نشر من قبل Shuhong Yang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the multi-instrument observations, we make the first simultaneous imaging and spectral study on the null point of a fan-spine magnetic topology during a solar flare. When magnetic reconnection occurs at the null point, the fan-spine configuration brightens in the (extreme-)ultraviolet channels. In the H$alpha$ images, the fan-spine structure is partly filled and outlined by the bi-directional material flows ejected from the reconnection site. The extrapolated coronal magnetic field confirms the existence of the fan-spine topology. Before and after the flare peak, the total velocity of the outflows is estimated to be about 60 km s$^{-1}$. During the flare, the Si IV line profile at the reconnection region is enhanced both in the blue-wing and red-wing. At the flare peak time, the total velocity of the outflows is found to be 144 km s$^{-1}$. Superposed on the Si IV profile, there are several deep absorption lines with the blueshift of several tens of km s$^{-1}$. The reason is inferred to be that the bright reconnection region observed in Si IV channel is located under the cooler material appearing as dark features in the H$alpha$ line. The blueshifted absorption lines indicate the movement of the cooler material toward the observer. The depth of the absorption lines also depends on the amount of cooler material. These results imply that this kind of spectral profiles can be used as a tool to diagnose the properties of cooler material above reconnection site.



قيم البحث

اقرأ أيضاً

The fan-spine magnetic topology is believed to be responsible for many curious features in solar explosive events. A spine field line links distinct flux domains, but direct observation of such feature has been rare. Here we report a unique event obs erved by the Solar Dynamic Observatory where a set of hot coronal loops (over 10 MK) connected to a quasi-circular chromospheric ribbon at one end and a remote brightening at the other. Magnetic field extrapolation suggests these loops are partly tracer of the evolving spine field line. Continuous slipping- and null-point-type reconnections were likely at work, energizing the loop plasma and transferring magnetic flux within and across the fan quasi-separatrix layer. We argue that the initial reconnection is of the breakout type, which then transitioned to a more violent flare reconnection with an eruption from the fan dome. Significant magnetic field changes are expected and indeed ensued. This event also features an extreme-ultraviolet (EUV) late phase, i.e. a delayed secondary emission peak in warm EUV lines (about 2-7 MK). We show that this peak comes from the cooling of large post-reconnection loops beside and above the compact fan, a direct product of eruption in such topological settings. The long cooling time of the large arcades contributes to the long delay; additional heating may also be required. Our result demonstrates the critical nature of cross-scale magnetic coupling - topological change in a sub-system may lead to explosions on a much larger scale.
145 - D. Li , Z. J. Ning , 2015
We explore the Quasi-Periodic Pulsations (QPPs) in a solar flare observed by Fermi Gamma-ray Burst Monitor (GBM), Solar Dynamics Observatory (SDO), Solar Terrestrial Relations Observatory (STEREO), and Interface Region Imaging Spectrograph (IRIS) on 2014 September 10. QPPs are identified as the regular and periodic peaks on the rapidly-varying components, which are the light curves after removing the slowly-varying components. The QPPs display only three peaks at the beginning on the hard X-ray (HXR) emissions, but ten peaks on the chromospheric and coronal line emissions, and more than seven peaks (each peak is corresponding to a type III burst on the dynamic spectra) at the radio emissions. An uniform quasi-period about 4 minutes are detected among them. AIA imaging observations exhibit that the 4-min QPPs originate from the flare ribbon, and tend to appear on the ribbon front. IRIS spectral observations show that each peak of the QPPs tends to a broad line width and a red Doppler velocity at C I, O IV, Si IV, and Fe XXI lines. Our findings indicate that the QPPs are produced by the non-thermal electrons which are accelerated by the induced quasi-periodic magnetic reconnections in this flare.
96 - Z. Wu , Y. Chen , G. Huang 2016
Corona structures and processes during the pre-impulsive stage of solar eruption are crucial to understanding the physics leading to the subsequent explosive energy release. Here we present the first microwave imaging study of a hot flux rope structu re during the pre-impulsive stage of an eruptive M7.7 solar flare, with the Nobeyama Radioheliograph (NoRH) at 17 GHz. The flux rope is also observed by the SDO/AIA in its hot passbands of 94 and 131 AA. In the microwave data, it is revealed as an overall arcade-like structure consisting of several intensity enhancements bridged by generally weak emissions, with brightness temperatures ($T_B$) varying from ~10,000~K to ~20,000 K. Locations of microwave intensity enhancements along the structure remain relatively fixed at certain specific parts of the flux rope, indicating that the distribution of emitting electrons is affected by the large scale magnetic configuration of the twisted flux rope. Wavelet analysis shows a pronounced 2-min period of the microwave $T_B$ variation during the pre-impulsive stage of interest. The period agrees well with that reported for AIA sunward-contracting loops and upward ejective plasmoids (suggested to be reconnection outflows). This suggests that both periodicities are controlled by the same reconnection process that takes place intermittently at a 2-min time scale. We infer that at least a part of the emission is excited by non-thermal energetic electrons via the gyro-synchrotron mechanism. The study demonstrates the potential of microwave imaging in exploring the flux rope magnetic geometry and relevant reconnection process during the onset of solar eruption.
We analyse the coronal elemental abundances during a small flare using Hinode/EIS observations. Compared to the pre-flare elemental abundances, we observed a strong increase in coronal abundance of Ca XIV 193.84 {AA}, an emission line with low first ionisation potential (FIP < 10 eV), as quantified by the ratio Ca/Ar during the flare. This is in contrast to the unchanged abundance ratio observed using Si X 258.38 {AA}/S X 264.23 {AA}. We propose two different mechanisms to explain the different composition results. Firstly, the small flare-induced heating could have ionised S, but not the noble gas Ar, so that the flare-driven Alfven waves brought up Si, S and Ca in tandem via the ponderomotive force which acts on ions. Secondly, the location of the flare in strong magnetic fields between two sunspots may suggest fractionation occurred in the low chromosphere, where the background gas is neutral H. In this region, high-FIP S could behave more like a low-FIP than a high-FIP element. The physical interpretations proposed generate new insights into the evolution of plasma abundances in the solar atmosphere during flaring, and suggests that current models must be updated to reflect dynamic rather than just static scenarios.
The ion{Fe}{i} lines observed by the Hinode/SOT spectropolarimeter were always seen in absorption, apart from the extreme solar limb. Here we analyse a unique dataset capturing these lines in emission during a solar white-light flare. We analyse the temperature stratification in the solar photosphere during a white-light flare and compare it with the post-white-light flare state. We used two scans of the Hinode/SOT spectropolarimeter to infer, by means of the LTE inversion code Stokes Inversion based on Response function (SIR), the physical properties in the solar photosphere during and after a white-light flare. The resulting model atmospheres are compared and the changes are related to the white-light flare. We show that the analysed white-light flare continuum brightening is probably not caused by the temperature increase at the formation height of the photospheric continuum. However, the photosphere is heated by the flare approximately down to $log tau = -0.5$ and this results in emission profiles of the observed ion{Fe}{i} lines. From the comparison with the post-white-light flare state of the atmosphere, we estimate that the major contribution to the increase in the continuum intensity originates in the heated chromosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا