ترغب بنشر مسار تعليمي؟ اضغط هنا

The Evolution of Plasma Composition During a Solar Flare

351   0   0.0 ( 0 )
 نشر من قبل Andy Shu Ho To
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse the coronal elemental abundances during a small flare using Hinode/EIS observations. Compared to the pre-flare elemental abundances, we observed a strong increase in coronal abundance of Ca XIV 193.84 {AA}, an emission line with low first ionisation potential (FIP < 10 eV), as quantified by the ratio Ca/Ar during the flare. This is in contrast to the unchanged abundance ratio observed using Si X 258.38 {AA}/S X 264.23 {AA}. We propose two different mechanisms to explain the different composition results. Firstly, the small flare-induced heating could have ionised S, but not the noble gas Ar, so that the flare-driven Alfven waves brought up Si, S and Ca in tandem via the ponderomotive force which acts on ions. Secondly, the location of the flare in strong magnetic fields between two sunspots may suggest fractionation occurred in the low chromosphere, where the background gas is neutral H. In this region, high-FIP S could behave more like a low-FIP than a high-FIP element. The physical interpretations proposed generate new insights into the evolution of plasma abundances in the solar atmosphere during flaring, and suggests that current models must be updated to reflect dynamic rather than just static scenarios.



قيم البحث

اقرأ أيضاً

Understanding elemental abundance variations in the solar corona provides an insight into how matter and energy flow from the chromosphere into the heliosphere. Observed variations depend on the first ionization potential (FIP) of the main elements o f the Suns atmosphere. High-FIP elements (>10 eV) maintain photospheric abundances in the corona, whereas low-FIP elements have enhanced abundances. Conversely, inverse FIP (IFIP) refers to the enhancement of high-FIP or depletion of low-FIP elements. We use spatially resolved spectroscopic observations, specifically the Ar XIV/Ca XIV intensity ratio, from Hinodes Extreme-ultraviolet Imaging Spectrometer to investigate the distribution and evolution of plasma composition within two confined flares in a newly emerging, highly sheared active region. During the decay phase of the first flare, patches above the flare ribbons evolve from the FIP to the IFIP effect, while the flaring loop tops show a stronger FIP effect. The patch and loop compositions then evolve toward the pre-flare basal state. We propose an explanation of how flaring in strands of highly sheared emerging magnetic fields can lead to flare-modulated IFIP plasma composition over coalescing umbrae which are crossed by flare ribbons. Subsurface reconnection between the coalescing umbrae leads to the depletion of low-FIP elements as a result of an increased wave flux from below. This material is evaporated when the flare ribbons cross the umbrae. Our results are consistent with the ponderomotive fractionation model (Laming2015) for the creation of IFIP-biased plasma.
The ion{Fe}{i} lines observed by the Hinode/SOT spectropolarimeter were always seen in absorption, apart from the extreme solar limb. Here we analyse a unique dataset capturing these lines in emission during a solar white-light flare. We analyse the temperature stratification in the solar photosphere during a white-light flare and compare it with the post-white-light flare state. We used two scans of the Hinode/SOT spectropolarimeter to infer, by means of the LTE inversion code Stokes Inversion based on Response function (SIR), the physical properties in the solar photosphere during and after a white-light flare. The resulting model atmospheres are compared and the changes are related to the white-light flare. We show that the analysed white-light flare continuum brightening is probably not caused by the temperature increase at the formation height of the photospheric continuum. However, the photosphere is heated by the flare approximately down to $log tau = -0.5$ and this results in emission profiles of the observed ion{Fe}{i} lines. From the comparison with the post-white-light flare state of the atmosphere, we estimate that the major contribution to the increase in the continuum intensity originates in the heated chromosphere.
79 - S. Imada 2021
This study on plasma heating considers the time-dependent ionization process during a large solar flare on September 10, 2017, observed by Hinode/EIS. The observed FeXXIV / FeXXIII ratios increase downstream of the reconnection outflow, and they are consistent with the time-dependent ionization effect at a constant electron temperature Te = 25 MK. Moreover, this study also shows that the non-thermal velocity, which can be related to the turbulent velocity, reduces significantly along the downstream of the reconnection outflow, even when considering the time-dependent ionization process.
We examine spectropolarimetric data from the CoMP instrument, acquired during the evolution of the September 10th 2017 X8.2 solar flare on the western solar limb. CoMP captured linearly polarized light from two emission lines of Fe XIII at 1074.7 and 1079.8 nm, from 1.03 to 1.5 solar radii. We focus here on the hot plasma-sheet lying above the bright flare loops and beneath the ejected CME. The polarization has a striking and coherent spatial structure, with unexpectedly small polarization aligned with the plasma-sheet. By elimination, we find that small-scale magnetic field structure is needed to cause such significant depolarization, and suggest that plasmoid formation during reconnection (associated with the tearing mode instability) creates magnetic structure on scales below instrument resolution of 6 Mm. We conclude that polarization measurements with new coronagraphs, such as the upcoming DKIST, will further enhance our understanding of magnetic reconnection and development of turbulence in the solar corona.
We study the relationship between implosive motions in a solar flare, and the energy redistribution in the form of oscillatory structures and particle acceleration. The flare SOL2012-03-09T03:53 (M6.4) shows clear evidence for an irreversible (stepwi se) coronal implosion. Extreme-ultraviolet (EUV) images show at least four groups of coronal loops at different heights overlying the flaring core undergoing fast contraction during the impulsive phase of the flare. These contractions start around a minute after the flare onset, and the rate of contraction is closely associated with the intensity of the hard X-ray (HXR) and microwave emissions. They also seem to have a close relationship with the dimming associated with the formation of the Coronal Mass Ejection (CME) and a global EUV wave. Several studies now have detected contracting motions in the corona during solar flares that can be interpreted as the implosion necessary to release energy. Our results confirm this, and tighten the association with the flare impulsive phase. We add to the phenomenology by noting the presence of oscillatory variations revealed by GOES soft X-rays (SXR) and spatially-integrated EUV emission at 94 and 335 {AA}. We identify pulsations of $approx 60$ seconds in SXR and EUV data, which we interpret as persistent, semi-regular compressions of the flaring core region which modulate the plasma temperature and emission measure. The loop oscillations, observed over a large region, also allow us to provide rough estimates of the energy temporarily stored in the eigenmodes of the active-region structure as it approaches its new equilibrium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا