ترغب بنشر مسار تعليمي؟ اضغط هنا

Hot Spine Loops and the Nature of a Late-Phase Solar Flare

132   0   0.0 ( 0 )
 نشر من قبل Xudong Sun
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The fan-spine magnetic topology is believed to be responsible for many curious features in solar explosive events. A spine field line links distinct flux domains, but direct observation of such feature has been rare. Here we report a unique event observed by the Solar Dynamic Observatory where a set of hot coronal loops (over 10 MK) connected to a quasi-circular chromospheric ribbon at one end and a remote brightening at the other. Magnetic field extrapolation suggests these loops are partly tracer of the evolving spine field line. Continuous slipping- and null-point-type reconnections were likely at work, energizing the loop plasma and transferring magnetic flux within and across the fan quasi-separatrix layer. We argue that the initial reconnection is of the breakout type, which then transitioned to a more violent flare reconnection with an eruption from the fan dome. Significant magnetic field changes are expected and indeed ensued. This event also features an extreme-ultraviolet (EUV) late phase, i.e. a delayed secondary emission peak in warm EUV lines (about 2-7 MK). We show that this peak comes from the cooling of large post-reconnection loops beside and above the compact fan, a direct product of eruption in such topological settings. The long cooling time of the large arcades contributes to the long delay; additional heating may also be required. Our result demonstrates the critical nature of cross-scale magnetic coupling - topological change in a sub-system may lead to explosions on a much larger scale.



قيم البحث

اقرأ أيضاً

We study the relationship between implosive motions in a solar flare, and the energy redistribution in the form of oscillatory structures and particle acceleration. The flare SOL2012-03-09T03:53 (M6.4) shows clear evidence for an irreversible (stepwi se) coronal implosion. Extreme-ultraviolet (EUV) images show at least four groups of coronal loops at different heights overlying the flaring core undergoing fast contraction during the impulsive phase of the flare. These contractions start around a minute after the flare onset, and the rate of contraction is closely associated with the intensity of the hard X-ray (HXR) and microwave emissions. They also seem to have a close relationship with the dimming associated with the formation of the Coronal Mass Ejection (CME) and a global EUV wave. Several studies now have detected contracting motions in the corona during solar flares that can be interpreted as the implosion necessary to release energy. Our results confirm this, and tighten the association with the flare impulsive phase. We add to the phenomenology by noting the presence of oscillatory variations revealed by GOES soft X-rays (SXR) and spatially-integrated EUV emission at 94 and 335 {AA}. We identify pulsations of $approx 60$ seconds in SXR and EUV data, which we interpret as persistent, semi-regular compressions of the flaring core region which modulate the plasma temperature and emission measure. The loop oscillations, observed over a large region, also allow us to provide rough estimates of the energy temporarily stored in the eigenmodes of the active-region structure as it approaches its new equilibrium.
Using the multi-instrument observations, we make the first simultaneous imaging and spectral study on the null point of a fan-spine magnetic topology during a solar flare. When magnetic reconnection occurs at the null point, the fan-spine configurati on brightens in the (extreme-)ultraviolet channels. In the H$alpha$ images, the fan-spine structure is partly filled and outlined by the bi-directional material flows ejected from the reconnection site. The extrapolated coronal magnetic field confirms the existence of the fan-spine topology. Before and after the flare peak, the total velocity of the outflows is estimated to be about 60 km s$^{-1}$. During the flare, the Si IV line profile at the reconnection region is enhanced both in the blue-wing and red-wing. At the flare peak time, the total velocity of the outflows is found to be 144 km s$^{-1}$. Superposed on the Si IV profile, there are several deep absorption lines with the blueshift of several tens of km s$^{-1}$. The reason is inferred to be that the bright reconnection region observed in Si IV channel is located under the cooler material appearing as dark features in the H$alpha$ line. The blueshifted absorption lines indicate the movement of the cooler material toward the observer. The depth of the absorption lines also depends on the amount of cooler material. These results imply that this kind of spectral profiles can be used as a tool to diagnose the properties of cooler material above reconnection site.
We analyze a confined flare that developed a hot cusp-like structure high in the corona (H ~ 66 Mm). A growing cusp-shaped flare arcade is a typical feature in the standard model of eruptive flares, caused by magnetic reconnection at progressively la rger coronal heights. In contrast, we observe a static hot cusp during a confined flare. Despite an initial vertical temperature distribution similar to that in eruptive flares, we observe a distinctly different evolution during the late (decay) phase, in the form of prolonged hot emission. The distinct cusp shape, rooted at locations of non-thermal precursor activity, was likely caused by a magnetic field arcade that kinked near the top. Our observations indicate that the prolonged heating was a result of slow local reconnection and an increased thermal pressure near the kinked apexes due to continuous plasma upflows.
A second emission enhancement in warm coronal extreme-ultraviolet (EUV) lines (about 2-7 MK) during some solar flares is known as the EUV late phase. Imaging observations confirm that the late phase emission originates from a set of longer or higher loops than the main flare loops. Nevertheless, some questions remain controversial: What is the relationship between these two loop systems? What is the heating source of late phase emission, a heating accompany the main phase heating or occuring quite later? In this paper, we present clear evidence for heating source in a late-phase solar flare: magnetic reconnection of overlying field in a quadrupolar magnetic configuration. The event is triggered by an erupted core structure that eventually leads to a coronal mass ejection (CME). Cusp feature and its shrinkage motion high in the late-phase emission region are the manifestation of the later phase reconnection following the main flare reconnection. Using the enthalpy-based thermal evolution of loops (EBTEL) model, we reasonably reproduce the late-phase emissions in some EUV lines. We suggest that a continuous additional heating is responsible for the appearance of the elongated EUV late phase.
158 - S. Imada , K. Aoki , H. Hara 2013
Solar flares are one of the main forces behind space weather events. However the mechanism that drives such energetic phenomena is not fully understood. The standard eruptive flare model predicts that magnetic reconnection occurs high in the corona w here hot fast flows are created. Some imaging or spectroscopic observations have indicated the presence of these hot fast flows but there have been no spectroscopic scanning observation to date to measure the two-dimensional structure quantitatively. We analyzed a flare that occurred on the west solar limb on 27 January 2012 observed by the Hinode EUV Imaging Spectrometer (EIS) and found that the hot (~30MK) fast (>500 km/s) component was located above the flare loop. This is consistent with magnetic reconnection taking place above the flare loop.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا