ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Logical Specification of Statistical Machine Learning

71   0   0.0 ( 0 )
 نشر من قبل Yusuke Kawamoto
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Yusuke Kawamoto




اسأل ChatGPT حول البحث

We introduce a logical approach to formalizing statistical properties of machine learning. Specifically, we propose a formal model for statistical classification based on a Kripke model, and formalize various notions of classification performance, robustness, and fairness of classifiers by using epistemic logic. Then we show some relationships among properties of classifiers and those between classification performance and robustness, which suggests robustness-related properties that have not been formalized in the literature as far as we know. To formalize fairness properties, we define a notion of counterfactual knowledge and show techniques to formalize conditional indistinguishability by using counterfactual epistemic operators. As far as we know, this is the first work that uses logical formulas to express statistical properties of machine learning, and that provides epistemic (resp. counterfactually epistemic) views on robustness (resp. fairness) of classifiers.



قيم البحث

اقرأ أيضاً

75 - Yusuke Kawamoto 2020
We propose an epistemic approach to formalizing statistical properties of machine learning. Specifically, we introduce a formal model for supervised learning based on a Kripke model where each possible world corresponds to a possible dataset and moda l operators are interpreted as transformation and testing on datasets. Then we formalize various notions of the classification performance, robustness, and fairness of statistical classifiers by using our extension of statistical epistemic logic (StatEL). In this formalization, we show relationships among properties of classifiers, and relevance between classification performance and robustness. As far as we know, this is the first work that uses epistemic models and logical formulas to express statistical properties of machine learning, and would be a starting point to develop theories of formal specification of machine learning.
Over the last 20 years a large number of automata-based specification theories have been proposed for modeling of discrete,real-time and probabilistic systems. We have observed a lot of shared algebraic structure between these formalisms. In this sho rt abstract, we collect results of our work in progress on describing and systematizing the algebraic assumptions in specification theories.
The Right to be Forgotten is part of the recently enacted General Data Protection Regulation (GDPR) law that affects any data holder that has data on European Union residents. It gives EU residents the ability to request deletion of their personal da ta, including training records used to train machine learning models. Unfortunately, Deep Neural Network models are vulnerable to information leaking attacks such as model inversion attacks which extract class information from a trained model and membership inference attacks which determine the presence of an example in a models training data. If a malicious party can mount an attack and learn private information that was meant to be removed, then it implies that the model owner has not properly protected their users rights and their models may not be compliant with the GDPR law. In this paper, we present two efficient methods that address this question of how a model owner or data holder may delete personal data from models in such a way that they may not be vulnerable to model inversion and membership inference attacks while maintaining model efficacy. We start by presenting a real-world threat model that shows that simply removing training data is insufficient to protect users. We follow that up with two data removal methods, namely Unlearning and Amnesiac Unlearning, that enable model owners to protect themselves against such attacks while being compliant with regulations. We provide extensive empirical analysis that show that these methods are indeed efficient, safe to apply, effectively remove learned information about sensitive data from trained models while maintaining model efficacy.
Distributed training across several quantum computers could significantly improve the training time and if we could share the learned model, not the data, it could potentially improve the data privacy as the training would happen where the data is lo cated. However, to the best of our knowledge, no work has been done in quantum machine learning (QML) in federation setting yet. In this work, we present the federated training on hybrid quantum-classical machine learning models although our framework could be generalized to pure quantum machine learning model. Specifically, we consider the quantum neural network (QNN) coupled with classical pre-trained convolutional model. Our distributed federated learning scheme demonstrated almost the same level of trained model accuracies and yet significantly faster distributed training. It demonstrates a promising future research direction for scaling and privacy aspects.
Learning how to predict future events from patterns of past events is difficult when the set of possible event types is large. Training an unrestricted neural model might overfit to spurious patterns. To exploit domain-specific knowledge of how past events might affect an events present probability, we propose using a temporal deductive database to track structured facts over time. Rules serve to prove facts from other facts and from past events. Each fact has a time-varying state---a vector computed by a neural net whose topology is determined by the facts provenance, including its experience of past events. The possible event types at any time are given by special facts, whose probabilities are neurally modeled alongside their states. In both synthetic and real-world domains, we show that neural probabilistic models derived from concise Datalog programs improve prediction by encoding appropriate domain knowledge in their architecture.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا