ترغب بنشر مسار تعليمي؟ اضغط هنا

Distillation of Gaussian Einstein-Podolsky-Rosen steering with noiseless linear amplification

128   0   0.0 ( 0 )
 نشر من قبل Xiaolong Su
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite an extensive research on protecting entanglement from decoherence, it remains a challenge to protect Einstein-Podolsky-Rosen (EPR) steering due to its intrinsic difference from entanglement. We experimentally demonstrate the distillation of Gaussian EPR steering and entanglement in lossy and noisy environment using measurement-based noiseless linear amplification (NLA). Different from entanglement distillation, the extension of steerable region is observed in the distillation of EPR steering besides the enhancement of steerability. We recover the two-way steerability from one-way in certain region of loss and enhance steerablilities for both directions when the NLA based on Bobs measurement results is implemented. The one-way steering can even be recovered from non-steerable region in a certain extent in a noisy environment by implementing the NLA based on Alices measurement results. As an application, the distilled EPR steering is used to extract secret key in one-sided device-independent quantum key distribution.



قيم البحث

اقرأ أيضاً

112 - J. Bernu , S. Armstrong , T. Symul 2014
We study the operational regime of a noiseless linear amplifier based on quantum scissors that can nondeterministically amplify the one photon component of a quantum state with weak excitation. It has been shown that an arbitrarily large quantum stat e can be amplified by first splitting it into weak excitation states using a network of beamsplitters. The output states of the network can then be coherently recombined. In this paper, we analyse the performance of such a device for distilling entanglement after transmission through a lossy quantum channel, and look at two measures to determine the efficacy of the noiseless linear amplifier. The measures used are the amount of entanglement achievable and the final purity of the output amplified entangled state. We study the performances of both a single and a two-element noiseless linear amplifier for amplifying weakly excited states. Practically, we show that it may be advantageous to work with a limited number of stages.
Einstein-Podolsky-Rosen (EPR) steering is a form of bipartite quantum correlation that is intermediate between entanglement and Bell nonlocality. It allows for entanglement certification when the measurements performed by one of the parties are not c haracterised (or are untrusted) and has applications in quantum key distribution. Despite its foundational and applied importance, EPR steering lacks a quantitative assessment. Here we propose a way of quantifying this phenomenon and use it to study the steerability of several quantum states. In particular we show that every pure entangled state is maximally steerable, the projector onto the anti-symmetric subspace is maximally steerable for all dimensions, we provide a new example of one-way steering, and give strong support that states with positive-partial-transposition are not steerable.
Protocols for testing or exploiting quantum correlations-such as entanglement, Bell nonlocality, and Einstein-Podolsky-Rosen steering- generally assume a common reference frame between two parties. Establishing such a frame is resource-intensive, and can be technically demanding for distant parties. While Bell nonlocality can be demonstrated with high probability for a large class of two-qubit entangled states when the parties have one or no shared reference direction, the degree of observed nonlocality is measurement-orientation dependent and can be arbitrarily small. In contrast, we theoretically prove that steering can be demonstrated with 100% probability, for a larger class of states, in a rotationally-invariant manner, and experimentally demonstrate rotationally-invariant steering in a variety of cases. We also show, by comparing with the steering inequality of Cavalcanti et al. [J. Opt. Soc. Am. B 32, A74 (2015)], that the steering inequality we derive is the optimal rotationally invariant one for the case of two settings per side and two-qubit states having maximally mixed reduced (local) states.
If entanglement could be verified without any trust in the devices of observers, i.e., in a device-independent (DI) way, then unconditional security can be guaranteed for various quantum information tasks. In this work, we propose an experimental-fri endly DI protocol to certify the presence of entanglement, based on Einstein-Podolsky-Rosen (EPR) steering. We first establish the DI verification framework, relying on the measurement-device-independent technique and self-testing, and show it is able to verify all EPR-steerable states. In the context of three-measurement settings as per party, it is found to be noise robustness towards inefficient measurements and imperfect self-testing. Finally, a four-photon experiment is implemented to device-independently verify EPR-steering even for Bell local states. Our work paves the way for realistic implementations of secure quantum information tasks.
98 - Ze-Yan Hao , Kai Sun , Yan Wang 2021
The Einstein-Podolsky-Rosen (EPR) steering, which is regarded as a category of quantum nonlocal correlations, owns the asymmetric property in contrast with the entanglement and the Bell nonlocality. For the multipartite EPR steering, monogamy, which limits the two observers to steer the third one simultaneously, emerges as an essential property. However, more configurations of shareability relations in the reduced subsystem which are beyond the monogamy could be observed by increasing the numbers of measurement setting, in which the experimental verification is still absent. Here, in an optical experiment, we provide a proof-of-principle demonstration of shareability of the EPR steering without constraint of monogamy in the three-qubit system, in which Alice could be steered by Bob and Charlie simultaneously. Moreover, based on the reduced bipartite EPR steering detection, we verify the genuine three-qubit entanglement. This work provides a basis for an improved understanding of the multipartite EPR steering and has potential applications in many quantum information protocols, such as multipartite entanglement detection and quantum cryptography.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا