ﻻ يوجد ملخص باللغة العربية
If entanglement could be verified without any trust in the devices of observers, i.e., in a device-independent (DI) way, then unconditional security can be guaranteed for various quantum information tasks. In this work, we propose an experimental-friendly DI protocol to certify the presence of entanglement, based on Einstein-Podolsky-Rosen (EPR) steering. We first establish the DI verification framework, relying on the measurement-device-independent technique and self-testing, and show it is able to verify all EPR-steerable states. In the context of three-measurement settings as per party, it is found to be noise robustness towards inefficient measurements and imperfect self-testing. Finally, a four-photon experiment is implemented to device-independently verify EPR-steering even for Bell local states. Our work paves the way for realistic implementations of secure quantum information tasks.
Protocols for testing or exploiting quantum correlations-such as entanglement, Bell nonlocality, and Einstein-Podolsky-Rosen steering- generally assume a common reference frame between two parties. Establishing such a frame is resource-intensive, and
Einstein-Podolsky-Rosen (EPR) steering is a form of bipartite quantum correlation that is intermediate between entanglement and Bell nonlocality. It allows for entanglement certification when the measurements performed by one of the parties are not c
The Einstein-Podolsky-Rosen (EPR) steering, which is regarded as a category of quantum nonlocal correlations, owns the asymmetric property in contrast with the entanglement and the Bell nonlocality. For the multipartite EPR steering, monogamy, which
The Einstein-Podolsky-Rosen (EPR) paradox plays a fundamental role in our understanding of quantum mechanics, and is associated with the possibility of predicting the results of non-commuting measurements with a precision that seems to violate the un
Within the hierarchy of inseparable quantum correlations, Einstein-Podolsky-Rosen steering is distinguished from both entanglement and Bell nonlocality by its asymmetry -- there exist conditions where the steering phenomenon changes from being observ