ترغب بنشر مسار تعليمي؟ اضغط هنا

Solar Flares Forecasting Using Time Series and Extreme Gradient Boosting Ensembles

101   0   0.0 ( 0 )
 نشر من قبل Tiago Cinto
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Cinto




اسأل ChatGPT حول البحث

Space weather events may cause damage to several fields, including aviation, satellites, oil and gas industries, and electrical systems, leading to economic and commercial losses. Solar flares are one of the most significant events, and refer to sudden radiation releases that can affect the Earths atmosphere within a few hours or minutes. Therefore, it is worth designing high-performance systems for forecasting such events. Although in the literature there are many approaches for flare forecasting, there is still a lack of consensus concerning the techniques used for designing these systems. Seeking to establish some standardization while designing flare predictors, in this study we propose a novel methodology for designing such predictors, further validated with extreme gradient boosting tree classifiers and time series. This methodology relies on the following well-defined machine learning based pipeline: (i) univariate feature selection; (ii) randomized hyper-parameter optimization; (iii) imbalanced data treatment; (iv) adjustment of cut-off point of classifiers; and (v) evaluation under operational settings. To verify our methodology effectiveness, we designed and evaluated three proof-of-concept models for forecasting $geq C$ class flares up to 72 hours ahead. Compared to baseline models, those models were able to significantly increase their scores of true skill statistics (TSS) under operational forecasting scenarios by 0.37 (predicting flares in the next 24 hours), 0.13 (predicting flares within 24-48 hours), and 0.36 (predicting flares within 48-72 hours). Besides increasing TSS, the methodology also led to significant increases in the area under the ROC curve, corroborating that we improved the positive and negative recalls of classifiers while decreasing the number of false alarms.



قيم البحث

اقرأ أيضاً

The popularity, cost-effectiveness and ease of information exchange that electronic mails offer to electronic device users has been plagued with the rising number of unsolicited or spam emails. Driven by the need to protect email users from this grow ing menace, research in spam email filtering/detection systems has being increasingly active in the last decade. However, the adaptive nature of spam emails has often rendered most of these systems ineffective. While several spam detection models have been reported in literature, the reported performance on an out of sample test data shows the room for more improvement. Presented in this research is an improved spam detection model based on Extreme Gradient Boosting (XGBoost) which to the best of our knowledge has received little attention spam email detection problems. Experimental results show that the proposed model outperforms earlier approaches across a wide range of evaluation metrics. A thorough analysis of the model results in comparison to the results of earlier works is also presented.
Functional time series whose sample elements are recorded sequentially over time are frequently encountered with increasing technology. Recent studies have shown that analyzing and forecasting of functional time series can be performed easily using f unctional principal component analysis and existing univariate/multivariate time series models. However, the forecasting performance of such functional time series models may be affected by the presence of outlying observations which are very common in many scientific fields. Outliers may distort the functional time series model structure, and thus, the underlying model may produce high forecast errors. We introduce a robust forecasting technique based on weighted likelihood methodology to obtain point and interval forecasts in functional time series in the presence of outliers. The finite sample performance of the proposed method is illustrated by Monte Carlo simulations and four real-data examples. Numerical results reveal that the proposed method exhibits superior performance compared with the existing method(s).
Many applications require the ability to judge uncertainty of time-series forecasts. Uncertainty is often specified as point-wise error bars around a mean or median forecast. Due to temporal dependencies, such a method obscures some information. We w ould ideally have a way to query the posterior probability of the entire time-series given the predictive variables, or at a minimum, be able to draw samples from this distribution. We use a Bayesian dictionary learning algorithm to statistically generate an ensemble of forecasts. We show that the algorithm performs as well as a physics-based ensemble method for temperature forecasts for Houston. We conclude that the method shows promise for scenario forecasting where physics-based methods are absent.
Prediction for high dimensional time series is a challenging task due to the curse of dimensionality problem. Classical parametric models like ARIMA or VAR require strong modeling assumptions and time stationarity and are often overparametrized. This paper offers a new flexible approach using recent ideas of manifold learning. The considered model includes linear models such as the central subspace model and ARIMA as particular cases. The proposed procedure combines manifold denoising techniques with a simple nonparametric prediction by local averaging. The resulting procedure demonstrates a very reasonable performance for real-life econometric time series. We also provide a theoretical justification of the manifold estimation procedure.
A white paper prepared for the Space Studies Board, National Academy of Sciences (USA), for its Decadal Survey of Solar and Space Physics (Heliophysics), reviewing and encouraging studies of flare physics in the chromosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا