ﻻ يوجد ملخص باللغة العربية
Functional time series whose sample elements are recorded sequentially over time are frequently encountered with increasing technology. Recent studies have shown that analyzing and forecasting of functional time series can be performed easily using functional principal component analysis and existing univariate/multivariate time series models. However, the forecasting performance of such functional time series models may be affected by the presence of outlying observations which are very common in many scientific fields. Outliers may distort the functional time series model structure, and thus, the underlying model may produce high forecast errors. We introduce a robust forecasting technique based on weighted likelihood methodology to obtain point and interval forecasts in functional time series in the presence of outliers. The finite sample performance of the proposed method is illustrated by Monte Carlo simulations and four real-data examples. Numerical results reveal that the proposed method exhibits superior performance compared with the existing method(s).
Two nonparametric methods are presented for forecasting functional time series (FTS). The FTS we observe is a curve at a discrete-time point. We address both one-step-ahead forecasting and dynamic updating. Dynamic updating is a forward prediction of
We address the problem of forecasting high-dimensional functional time series through a two-fold dimension reduction procedure. The difficulty of forecasting high-dimensional functional time series lies in the curse of dimensionality. In this paper,
We discuss model and forecast combination in time series forecasting. A foundational Bayesian perspective based on agent opinion analysis theory defines a new framework for density forecast combination, and encompasses several existing forecast pooli
We propose a Bayesian nonparametric approach to modelling and predicting a class of functional time series with application to energy markets, based on fully observed, noise-free functional data. Traders in such contexts conceive profitable strategie
This paper proposes a two-fold factor model for high-dimensional functional time series (HDFTS), which enables the modeling and forecasting of multi-population mortality under the functional data framework. The proposed model first decomposes the HDF