ﻻ يوجد ملخص باللغة العربية
During the New Horizons spacecrafts encounter with Pluto, the Alice ultraviolet spectrograph conducted a series of observations that detected emissions from both the interplanetary medium (IPM) and Pluto. In the direction of Pluto, the IPM was found to be 133.4$pm$0.6R at Lyman $alpha$, 0.24$pm$0.02R at Lyman $beta$, and <0.10R at He I 584{AA}. We analyzed 3,900s of data obtained shortly before closest approach to Pluto and detect airglow emissions from H I, N I, N II, N$_2$, and CO above the disk of Pluto. We find Plutos brightness at Lyman $alpha$ to be $29.3pm1.9$R, in good agreement with pre-encounter estimates. The detection of the N II multiplet at 1085{AA} marks the first direct detection of ions in Plutos atmosphere. We do not detect any emissions from noble gasses and place a 3$sigma$ upper limit of 0.14 R on the brightness of the Ar I 1048{AA} line. We compare pre-encounter model predictions and predictions from our own airglow model, based on atmospheric profiles derived from the solar occultation observed by New Horizons, to the observed brightness of Plutos airglow. Although completely opaque at Lyman $alpha$, Plutos atmosphere is optically thin at wavelengths longer than 1425{AA}. Consequently, a significant amount of solar FUV light reaches the surface, where it can participate in space weathering processes. From the brightness of sunlight reflected from Pluto, we find the surface has a reflectance factor (I/F) of 17% between 1400-1850{AA}. We also report the first detection of an C$_3$ hydrocarbon molecule, methylacetylene, in absorption, at a column density of ~5$times10^{15}$ cm$^{-2}$, corresponding to a column-integrated mixing ratio of $1.6times10^{-6}$.
We present the first measurements of Charons far-ultraviolet surface reflectance, obtained by the Alice spectrograph on New Horizons. We find no measurable flux shortward of 1650 A, and Charons geometric albedo is $<0.019$ ($3sigma$) at 1600 A. From
Plutos atmospheric haze settles out rapidly compared with geological timescales. It needs to be accounted for as a surface material, distinct from Plutos icy bedrock and from the volatile ices that migrate via sublimation and condensation on seasonal
The New Horizons spacecraft provided near global observations of Pluto that far exceed the resolution of Earth-based data sets. Most Pluto New Horizons analysis hitherto has focused on the encounter hemisphere of Pluto (i.e., the antiCharon hemispher
Haze in Plutos atmosphere was detected in images by both the Long Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) on New Horizons. LORRI observed haze up to altitudes of at least 200 km above Plutos surface at
We analyse MESSENGER reflectance measurements covering the northern polar region of Mercury, the least studied region of the northern mercurian hemisphere. We use observations from the Mercury Dual Imaging System Wide-Angle Camera (MDIS/WAC) and the