ترغب بنشر مسار تعليمي؟ اضغط هنا

Plutos Far Side

59   0   0.0 ( 0 )
 نشر من قبل S. Alan Stern
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The New Horizons spacecraft provided near global observations of Pluto that far exceed the resolution of Earth-based data sets. Most Pluto New Horizons analysis hitherto has focused on the encounter hemisphere of Pluto (i.e., the antiCharon hemisphere containing Sputnik Planitia). In this work, we summarize and interpret data on the far side (i.e., the non-encounter hemisphere), providing the first integrated New Horizons overview of the far side terrains. We find strong evidence for widespread bladed deposits, evidence for an impact crater about as large as any on the near side hemisphere, evidence for complex lineations approximately antipodal to Sputnik Planitia that may be causally related, and evidence that the far side maculae are smaller and more structured than the encounter hemisphere maculae.



قيم البحث

اقرأ أيضاً

Haze in Plutos atmosphere was detected in images by both the Long Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) on New Horizons. LORRI observed haze up to altitudes of at least 200 km above Plutos surface at solar phase angles from ~20{deg} to ~169{deg}. The haze is structured with about ~20 layers, and the extinction due to haze is greater in the northern hemisphere than at equatorial or southern latitudes. However, more haze layers are discerned at equatorial latitudes. A search for temporal variations found no evidence for motions of haze layers (temporal changes in layer altitudes) on time scales of 2 to 5 hours, but did find evidence of changes in haze scale height above 100 km altitude. An ultraviolet extinction attributable to the atmospheric haze was also detected by the ALICE ultraviolet spectrograph on New Horizons. The haze particles are strongly forward-scattering in the visible, and a microphysical model of haze is presented which reproduces the visible phase function just above the surface with 0.5 {mu}m spherical particles, but also invokes fractal aggregate particles to fit the visible phase function at 45 km altitude and account for UV extinction. A model of haze layer generation by orographic excitation of gravity waves is presented. This model accounts for the observed layer thickness and distribution with altitude. Haze particles settle out of the atmosphere and onto Plutos surface, at a rate sufficient to alter surface optical properties on seasonal time scales. Plutos regional scale albedo contrasts may be preserved in the face of the haze deposition by atmospheric collapse.
Combining stellar occultation observations probing Plutos atmosphere from 1988 to 2013 and models of energy balance between Plutos surface and atmosphere, we conclude that Plutos atmosphere does not collapse at any point in its 248-year orbit. The oc cultation results show an increasing atmospheric pressure with time in the current epoch, a trend present only in models with a high thermal inertia and a permanent N2 ice cap at Plutos north rotational pole.
175 - P. C. Liewer , J. Qiu , C. Lindsey 2017
Seismic maps of the Suns far hemisphere, computed from Doppler data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) are now being used routinely to detect strong magnetic regions on the far side of the Su n (http:/jsoc.stanford.edu/data/farside/). To test the reliability of this technique, the helioseismically inferred active region detections are compared with far-side observation of solar activity from the Solar TErrestrial RElations Observatory (STEREO), using brightness in extreme ultraviolet light (EUV) as a proxy for magnetic fields. Two approaches are used to analyze nine months of STEREO and HMI data. In the first approach, we determine whether or not new large east-limb active regions are detected seismically on the far side before they appear Earth side and study how the detectability of these regions relates to their EUV intensity. We find that, while there is a range of EUV intensities for which far-side regions may or may not be detected seismically, there appears to be an intensity level above which they are almost always detected and an intensity level below which they are never detected. In the second approach, we analyze concurrent extreme ultraviolet and helioseismic far-side observations. We find that 100% (22) of the far-side seismic regions correspond to an extreme ultraviolet plage; 95% of these either became a NOAA-designated magnetic region when reaching the east limb or were one before crossing to the far side. A low but significant correlation is found between the seismic signature strength and the EUV intensity of a farside region.
Plutos atmospheric haze settles out rapidly compared with geological timescales. It needs to be accounted for as a surface material, distinct from Plutos icy bedrock and from the volatile ices that migrate via sublimation and condensation on seasonal timescales. This paper explores how a steady supply of atmospheric haze might affect three distinct provinces on Pluto. We pose the question of why they each look so different from one another if the same haze material is settling out onto all of them. Cthulhu is a more ancient region with comparatively little present-day geological activity, where the haze appears to simply accumulate over time. Sputnik Planitia is a very active region where glacial convection, as well as sublimation and condensation rapidly refresh the surface, hiding recently deposited haze from view. Lowell Regio is a region of intermediate age featuring very distinct coloration from the rest of Pluto. Using a simple model haze particle as a colorant, we are not able to match the colors in both Lowell Regio and Cthulhu. To account for their distinct colors, we propose that after arrival at Plutos surface, haze particles may be less inert than might be supposed from the low surface temperatures. They must either interact with local materials and environments to produce distinct products in different regions, or else the supply of haze must be non-uniform in time and/or location, such that different products are delivered to different places.
During the New Horizons spacecrafts encounter with Pluto, the Alice ultraviolet spectrograph conducted a series of observations that detected emissions from both the interplanetary medium (IPM) and Pluto. In the direction of Pluto, the IPM was found to be 133.4$pm$0.6R at Lyman $alpha$, 0.24$pm$0.02R at Lyman $beta$, and <0.10R at He I 584{AA}. We analyzed 3,900s of data obtained shortly before closest approach to Pluto and detect airglow emissions from H I, N I, N II, N$_2$, and CO above the disk of Pluto. We find Plutos brightness at Lyman $alpha$ to be $29.3pm1.9$R, in good agreement with pre-encounter estimates. The detection of the N II multiplet at 1085{AA} marks the first direct detection of ions in Plutos atmosphere. We do not detect any emissions from noble gasses and place a 3$sigma$ upper limit of 0.14 R on the brightness of the Ar I 1048{AA} line. We compare pre-encounter model predictions and predictions from our own airglow model, based on atmospheric profiles derived from the solar occultation observed by New Horizons, to the observed brightness of Plutos airglow. Although completely opaque at Lyman $alpha$, Plutos atmosphere is optically thin at wavelengths longer than 1425{AA}. Consequently, a significant amount of solar FUV light reaches the surface, where it can participate in space weathering processes. From the brightness of sunlight reflected from Pluto, we find the surface has a reflectance factor (I/F) of 17% between 1400-1850{AA}. We also report the first detection of an C$_3$ hydrocarbon molecule, methylacetylene, in absorption, at a column density of ~5$times10^{15}$ cm$^{-2}$, corresponding to a column-integrated mixing ratio of $1.6times10^{-6}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا