ﻻ يوجد ملخص باللغة العربية
This chapter is divided into two parts. The first is largely expository and builds on Karandikars axiomatisation of It{^o} calculus for matrix-valued semimartin-gales. Its aim is to unfold in detail the algebraic structures implied for iterated It{^o} and Stratonovich integrals. These constructions generalise the classical rules of Chen calculus for deterministic scalar-valued iterated integrals. The second part develops the stochastic analog of what is commonly called chronological calculus in control theory. We obtain in particular a pre-Lie Magnus formula for the logarithm of the It{^o} stochastic exponential of matrix-valued semimartingales.
We investigate the algebra of repeated integrals of semimartingales. We prove that a minimal family of semimartingales generates a quasi-shuffle algebra. In essence, to fulfill the minimality criterion, first, the family must be a minimal generator o
We discuss a non--commutative integration calculus arising in the mathematical description of anomalies in fermion--Yang--Mills systems. We consider the differential complex of forms $u_0ccr{eps}{u_1}cdotsccr{eps}{u_n}$ with $eps$ a grading operator
The Connes-Kreimer Hopf algebra of rooted trees, its dual, and the Foissy Hopf algebra of of planar rooted trees are related to each other and to the well-known Hopf algebras of symmetric and quasi-symmetric functions via a pair of commutative diagra
This paper shows how gauge theoretic structures arise naturally in a non-commutative calculus. Aspects of gauge theory, Hamiltonian mechanics and quantum mechanics arise naturally in the mathematics of a non-commutative framework for calculus and dif
Using time-reversal, we introduce a stochastic integral for zero-energy additive functionals of symmetric Markov processes, extending earlier work of S. Nakao. Various properties of such stochastic integrals are discussed and an It^{o} formula for Dirichlet processes is obtained.