ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic calculus for symmetric Markov processes

344   0   0.0 ( 0 )
 نشر من قبل Z.-Q. Chen
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using time-reversal, we introduce a stochastic integral for zero-energy additive functionals of symmetric Markov processes, extending earlier work of S. Nakao. Various properties of such stochastic integrals are discussed and an It^{o} formula for Dirichlet processes is obtained.



قيم البحث

اقرأ أيضاً

112 - Eric Foxall 2016
We describe stochastic calculus in the context of processes that are driven by an adapted point process of locally finite intensity and are differentiable between jumps. This includes Markov chains as well as non-Markov processes. By analogy with It^ o processes we define the drift and diffusivity, which we then use to describe a general sample path estimate. We then give several examples, including ODE approximation, processes with linear drift, first passage times, and an application to the stochastic logistic model.
We construct a family of genealogy-valued Markov processes that are induced by a continuous-time Markov population process. We derive exact expressions for the likelihood of a given genealogy conditional on the history of the underlying population pr ocess. These lead to a version of the nonlinear filtering equation, which can be used to design efficient Monte Carlo inference algorithms. Existing full-information approaches for phylodynamic inference are special cases of the theory.
This paper describes the structure of solutions to Kolmogorovs equations for nonhomogeneous jump Markov processes and applications of these results to control of jump stochastic systems. These equations were studied by Feller (1940), who clarified in 1945 in the errata to that paper that some of its results covered only nonexplosive Markov processes. We present the results for possibly explosive Markov processes. The paper is based on the invited talk presented by the authors at the International Conference dedicated to the 200th anniversary of the birth of P. L.~Chebyshev.
178 - J.-R. Chazottes , F. Redig 2010
We obtain moment and Gaussian bounds for general Lipschitz functions evaluated along the sample path of a Markov chain. We treat Markov chains on general (possibly unbounded) state spaces via a coupling method. If the first moment of the coupling tim e exists, then we obtain a variance inequality. If a moment of order 1+epsilon of the coupling time exists, then depending on the behavior of the stationary distribution, we obtain higher moment bounds. This immediately implies polynomial concentration inequalities. In the case that a moment of order 1+epsilon is finite uniformly in the starting point of the coupling, we obtain a Gaussian bound. We illustrate the general results with house of cards processes, in which both uniform and non-uniform behavior of moments of the coupling time can occur.
This paper addresses the question of predicting when a positive self-similar Markov process X attains its pathwise global supremum or infimum before hitting zero for the first time (if it does at all). This problem has been studied in Glover et al. ( 2013) under the assumption that X is a positive transient diffusion. We extend their result to the class of positive self-similar Markov processes by establishing a link to Baurdoux and van Schaik (2013), where the same question is studied for a Levy process drifting to minus infinity. The connection to Baurdoux and van Schaik (2013) relies on the so-called Lamperti transformation which links the class of positive self-similar Markov processes with that of Levy processes. Our approach will reveal that the results in Glover et al. (2013) for Bessel processes can also be seen as a consequence of self-similarity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا