ﻻ يوجد ملخص باللغة العربية
A major source of uncertainty in AGB models is the partial-mixing process of hydrogen, required for the formation of the so-called $^{13}$C pocket. Among the attempts to derive a self-consistent treatment of this physical process, there are 2D and 3D simulations of magnetic buoyancy. The $^{13}$C pocket resulting from mixing induced by magnetic buoyancy extends over a region larger than those so far assumed, showing an almost flat $^{13}$C distribution and a negligible amount of $^{14}$N. Recently, it has been proved to be a good candidate to match the records of isotopic abundance ratios of $s$-elements in presolar SiC grains. However, up to date such a magnetic mixing has been applied in post-process calculations only, being never implemented in a stellar evolutionary code. Here we present new stellar models, performed with the 1-d hydrostatic FUNS evolutionary code, which include magnetic buoyancy. We comment the resulting $s$-process distributions and show preliminary comparisons to spectroscopic observations and pre-solar grains measurements.
We identify three isotopic tracers that can be used to constrain the $^{13}C$-pocket and show the correlated isotopic ratios of Sr and Ba in single mainstream presolar SiC grains. These newly measured data can be explained by postprocess AGB model ca
We obtained high-resolution near-IR spectra of 45 AGB stars located in the Galactic bulge. The aim of the project is to determine key elemental abundances in these stars to help constrain the formation history of the bulge. A further aim is to link t
The rotational spectral lines of c-C$_3$H$_2$ and two kinds of the $^{13}$C isotopic species, c-$^{13}$CCCH$_2$ ($C_{2v}$ symmetry) and c-CC$^{13}$CH$_2$ ($C_s$ symmetry) have been observed in the 1-3 mm band toward the low-mass star-forming region L
We observed the AGB stars S Ori, GX Mon and R Cnc with the MIDI instrument at the VLTI. We compared the data to radiative transfer models of the dust shells, where the central stellar intensity profiles were described by dust-free dynamic model atmos
Context. The recent detection of warm H$_2$O vapor emission from the outflows of carbon-rich asymptotic giant branch (AGB) stars challenges the current understanding of circumstellar chemistry. Two mechanisms have been invoked to explain warm H$_2$O