ترغب بنشر مسار تعليمي؟ اضغط هنا

New insights into the dust formation of oxygen-rich AGB stars

346   0   0.0 ( 0 )
 نشر من قبل Iva Karovicova
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observed the AGB stars S Ori, GX Mon and R Cnc with the MIDI instrument at the VLTI. We compared the data to radiative transfer models of the dust shells, where the central stellar intensity profiles were described by dust-free dynamic model atmospheres. We used Al2O3 and warm silicate grains. Our S Ori and R Cnc data could be well described by an Al2O3 dust shell alone, and our GX Mon data by a mix of an Al2O3 and a silicate shell. The best-fit parameters for S Ori and R Cnc included photospheric angular diameters Theta(Phot) of 9.7+/-1.0mas and 12.3+/-1.0mas, optical depths tau(V)(Al2O3) of 1.5+/-0.5 and 1.35+/-0.2, and inner radii R(in) of 1.9+/-0.3R(Phot) and 2.2+/-0.3R(Phot), respectively. Best-fit parameters for GX Mon were Theta(Phot)=8.7+/-1.3mas, tau(V)(Al2O3)=1.9+/-0.6, R(in)(Al2O3)=2.1+/-0.3R(Phot), tau(V)(silicate)=3.2+/-0.5, and R(in)(silicate)=4.6+/-0.2R(Phot). Our model fits constrain the chemical composition and the inner boundary radii of the dust shells, as well as the photospheric angular diameters. Our interferometric results are consistent with Al2O3 grains condensing close to the stellar surface at about 2 stellar radii, co-located with the extended atmosphere and SiO maser emission, and warm silicate grains at larger distances of about 4--5 stellar radii. We verified that the number densities of aluminum can match that of the best-fit Al2O3 dust shell near the inner dust radius in sufficiently extended atmospheres, confirming that Al2O3 grains can be seed particles for the further dust condensation. Together with literature data of the mass-loss rates, our sample is consistent with a hypothesis that stars with low mass-loss rates form primarily dust that preserves the spectral properties of Al2O3, and stars with higher mass-loss rate form dust with properties of warm silicates.



قيم البحث

اقرأ أيضاً

We model the synthesis of molecules and dust in the inner wind of the oxygen-rich Mira-type star IK Tau, by considering the effects of periodic shocks induced by the stellar pulsation on the gas, and by following the non-equilibrium chemistry in the shocked gas layers between 1 and 10 Rstar. We consider a complete set of molecules and dust clusters, and combine the nucleation phase of dust formation with the condensation of these clusters into dust grains. Our derived molecular abundances and dust properties are compared to the most recent observational data. The chemistry is described by using a chemical kinetic network of reactions and the condensation mechanism is described by a Brownian formalism. The shocks drive an active non-equilibrium chemistry in the dust formation zone of IK Tau where the collision destruction of CO in the post-shock gas triggers the formation of C-bearing species such as HCN and CS. Most of the modelled molecular abundances agree well with the latest values derived from Herschel data. Clusters of alumina are produced within 2 Rstar and lead to a population of alumina grains close to the stellar surface. Clusters of silicates form at larger radii (r > 3 Rstar), where their nucleation is triggered by the formation of HSiO and H2SiO. They efficiently condense and reach their final grain size distribution between ~ 6 and 8 Rstar, with a major population of medium size grains peaking at~ 0.02 microns. This two dust-shell configuration agrees with recent interferometric observations. The derived dust-to-gas mass ratio for IK Tau is in the range 1-6x10^-3 and agrees with values derived from observations of O-rich Mira-type stars. Our results confirm the importance of periodic shocks in chemically shaping the inner wind of AGB stars and providing gas conditions conducive to the efficient synthesis of molecules and dust by non-equilibrium processes.
Aluminium monoxide, AlO, is likely efficiently depleted from the gas around oxygen-rich evolved stars to form alumina clusters and dust seeds. Its presence in the extended atmospheres of evolved stars has been derived from optical spectroscopy. More recently, AlO gas was also detected at long wavelengths around the supergiant VY CMa and the oxygen-rich asymptotic giant branch (AGB) star o Cet (Mira A). In search of AlO, we mined data obtained with APEX, the IRAM 30m telescope, Herschel/HIFI, SMA, and ALMA, which were primarily aimed at studying other molecular species. We report here on observations of AlO towards a sample of eight oxygen-rich AGB stars in different rotational transitions, up to seven for some stars. We present definite detections of one rotational transition of AlO for o Cet and R Aqr, and tentative detections of one transition for R Dor and o Cet, and two for IK Tau and W Hya. The presented spectra of WX Psc, R Cas, and TX Cam show no signature of AlO. For o Cet, R Aqr, and IK Tau, we find that the AlO(N=9-8) emission likely traces the inner parts of the wind, out to only a few tens of AU, where the gas has not yet reached its terminal velocity. The conclusive detections of AlO emission in the case of o Cet and R Aqr confirm the presence of AlO gas in outflows of AGB stars. The tentative detections further support this. Since most of the observations presented in this study were obtained with stronger emission from other species than AlO in mind, observations with higher sensitivity in combination with high angular resolution will improve our understanding of the presence and behaviour of AlO. From the current data sets we cannot firmly conclude whether there is a direct correlation between the wind properties and the detection rate of AlO emission. We hope that this study can serve as a stimulus to perform sample studies in search of AlO in oxygen-rich outflows.
We aim to determine the distributions of molecular SiS and CS in the circumstellar envelopes of oxygen-rich asymptotic giant branch stars and how these distributions differ between stars that lose mass at different rates. In this study we analyse ALM A observations of SiS and CS emission lines for three oxygen-rich galactic AGB stars: IK Tau, with a moderately high mass-loss rate of $5times10^{-6}$M$_odot$ yr$^{-1}$, and W Hya and R Dor with low mass loss rates of $sim1times10^{-7}$M$_odot$ yr$^{-1}$. These molecules are usually more abundant in carbon stars but the high sensitivity of ALMA allows us to detect their faint emission in the low mass-loss rate AGB stars. The high spatial resolution of ALMA also allows us to precisely determine the spatial distribution of these molecules in the circumstellar envelopes. We run radiative transfer models to calculate the molecular abundances and abundance distributions for each star. We find a spread of peak SiS abundances with $sim10^{-8}$ for R Dor, $sim10^{-7}$ for W Hya, and $sim3times10^{-6}$ for IK Tau relative to H$_2$. We find lower peak CS abundances of $sim7times10^{-9}$ for R Dor, $sim7times10^{-8}$ for W Hya and $sim4times10^{-7}$ for IK Tau, with some stratifications in the abundance distributions. For IK Tau we also calculate abundances for the detected isotopologues: C$^{34}$S, $^{29}$SiS, $^{30}$SiS, Si$^{33}$S, Si$^{34}$S, $^{29}$Si$^{34}$S, and $^{30}$Si$^{34}$S. Overall the isotopic ratios we derive for IK Tau suggest a lower metallicity than solar.
130 - R. Lombaert , L. Decin , P. Royer 2016
Context. The recent detection of warm H$_2$O vapor emission from the outflows of carbon-rich asymptotic giant branch (AGB) stars challenges the current understanding of circumstellar chemistry. Two mechanisms have been invoked to explain warm H$_2$O vapor formation. In the first, periodic shocks passing through the medium immediately above the stellar surface lead to H$_2$O formation. In the second, penetration of ultraviolet interstellar radiation through a clumpy circumstellar medium leads to the formation of H$_2$O molecules in the intermediate wind. Aims. We aim to determine the properties of H$_2$O emission for a sample of 18 carbon-rich AGB stars and subsequently constrain which of the above mechanisms provides the most likely warm H$_2$O formation pathway. Methods, Results, and Conclusions. See paper.
This work studies the formation and growth of boson stars and their surrounding miniclusters by gravitational condensation using non-linear dynamical numerical methods. Fully dynamical attractive and repulsive self-interactions are also considered fo r the first time. In the case of pure gravity, we numerically prove that the growth of boson stars inside halos slows down and saturates as has been previously conjectured, and detail its conditions. Self-interactions are included using the Gross-Pitaevskii-Poisson equations. We find that in the case of strong attractive self-interactions the boson stars can become unstable and collapse, in agreement with previous stationary computations. At even stronger coupling, the condensate fragments. Repulsive self-interactions, as expected, promote boson star formation, and lead to solutions with larger radii.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا