ﻻ يوجد ملخص باللغة العربية
We prove that in any finite set of $mathbb Z^d$ with $dge 3$, there is a subset whose capacity and volume are both of the same order as the capacity of the initial set. As an application we obtain estimates on the probability of {it covering uniformly} a finite set, and characterize some {it folding} events, under optimal hypotheses. For instance, knowing that a region of space has an {it atypically high occupation density} by some random walk, we show that this random region is most likely ball-like
We identify a fundamental phenomenon of heterogeneous one dimensional random walks: the escape (traversal) time is maximized when the heterogeneity in transition probabilities forms a pyramid-like potential barrier. This barrier corresponds to a dist
The reproduction speed of a continuous-time branching random walk is proportional to a positive parameter $lambda$. There is a threshold for $lambda$, which is called $lambda_w$, that separates almost sure global extinction from global survival. Anal
Lecture Notes. Minicourse given at the workshop Activated Random Walks, DLA, and related topics at IMeRA-Marseille, March 2015.
We study random walks on the giant component of the ErdH{o}s-Renyi random graph ${cal G}(n,p)$ where $p=lambda/n$ for $lambda>1$ fixed. The mixing time from a worst starting point was shown by Fountoulakis and Reed, and independently by Benjamini, Ko
We study survival of nearest-neighbour branching random walks in random environment (BRWRE) on ${mathbb Z}$. A priori there are three different regimes of survival: global survival, local survival, and strong local survival. We show that local and st