ﻻ يوجد ملخص باللغة العربية
We identify a fundamental phenomenon of heterogeneous one dimensional random walks: the escape (traversal) time is maximized when the heterogeneity in transition probabilities forms a pyramid-like potential barrier. This barrier corresponds to a distinct arrangement of transition probabilities, sometimes referred to as the pendulum arrangement. We reduce this problem to a sum over products, combinatorial optimization problem, proving that this unique structure always maximizes the escape time. This general property may influence studies in epidemiology, biology, and computer science to better understand escape time behavior and construct intruder-resilient networks.
We prove that in any finite set of $mathbb Z^d$ with $dge 3$, there is a subset whose capacity and volume are both of the same order as the capacity of the initial set. As an application we obtain estimates on the probability of {it covering uniforml
We introduce a heterogeneous continuous time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environmen
We show that throughout the satisfiable phase the normalised number of satisfying assignments of a random $2$-SAT formula converges in probability to an expression predicted by the cavity method from statistical physics. The proof is based on showing
Consider a system of coalescing random walks where each individual performs random walk over a finite graph G, or (more generally) evolves according to some reversible Markov chain generator Q. Let C be the first time at which all walkers have coales
Corroborating a prediction from statistical physics, we prove that the Belief Propagation message passing algorithm approximates the partition function of the random $k$-SAT model well for all clause/variable densities and all inverse temperatures fo