ﻻ يوجد ملخص باللغة العربية
We implement the Gravitational Decoupling through the Minimal Geometric Deformation method and explore its effect on exterior solutions by imposing a regularity condition in the Tolman--Oppenheimer--Volkoff equation of the decoupling sector. We obtain that the decoupling function can be expressed formally in terms of an integral involving the $g_{tt}$ component of the metric of the seed solution. As a particular example, we implement the method by using the Schwarzschild exterior as a seed and we obtain that the asymptotic behavior of the extended geometry corresponds to a manifold with constant curvature.
The aim of this work is to obtain new analitical solutions for Einstein equations in the anisotropical domain. This will be done via the minimal geometric deformation (MGD) approach, which is a simple and systematical method that allow us to decouple
We use gravitational decoupling to establish a connection between the minimal geometric deformation approach and the standard method for obtaining anisotropic fluid solutions. Motivated by the relations that appear in the framework of minimal geometr
In the present work we show that, in the linear regime, gravity theories with more than four derivatives can have remarkable regularity properties if compared to their fourth-order counterparts. To this end, we derive the expressions for the metric p
In this work we study static perfect fluid stars in 2+1 dimensions with an exterior BTZ spacetime. We found the general expression for the metric coefficients as a function of the density and pressure of the fluid. We found the conditions to have reg
In this work we suggest a simple model of the cosmological constant as the coefficient of the quantum tunneling of vacuum fluctuations (with wave length larger than Planck length) at tiny, boundary spherical shell of the universe (with thickness equi