ﻻ يوجد ملخص باللغة العربية
In the present work we show that, in the linear regime, gravity theories with more than four derivatives can have remarkable regularity properties if compared to their fourth-order counterparts. To this end, we derive the expressions for the metric potentials associated to a pointlike mass in a general higher-order gravity model in the Newtonian limit. It is shown that any polynomial model with at least six derivatives in both spin-2 and spin-0 sectors has regular curvature invariants. We also discuss the dynamical problem of the collapse of a small mass, considered as a spherical superposition of nonspinning gyratons. Similarly to the static case, for models with more than four derivatives the Kretschmann invariant is regular during the collapse of a thick null shell. We also verify the existence of the mass gap for the formation of mini black holes even if complex and/or degenerate poles are allowed, generalizing previous considerations on the subject and covering the case of Lee-Wick gravity. These interesting regularity properties of sixth- and higher-derivative models at the linear level reinforce the question of whether there can be nonsingular black holes in the full nonlinear model.
We obtain the static spherically symmetric solutions of a class of gravitational models whose additions to the General Relativity (GR) action forbid Ricci-flat, in particular, Schwarzschild geometries. These theories are selected to maintain the (fir
We present, in an explicit form, the metric for all spherically symmetric Schwarzschild-Bach black holes in Einstein-Weyl theory. In addition to the black hole mass, this complete family of spacetimes involves a parameter that encodes the value of th
We hereby derive the Newtonian metric potentials for the fourth-derivative gravity including the one-loop logarithm quantum corrections. It is explicitly shown that the behavior of the modified Newtonian potential near the origin is improved respect
We make a full classification of scalar monomials built of the Riemann curvature tensor up to the quadratic order and of the covariant derivatives of the scalar field up to the third order. From the point of view of the effective field theory, the th
It is shown that polynomial gravity theories with more than four derivatives in each scalar and tensor sectors have a regular weak-field limit, without curvature singularities. This is achieved by proving that in these models the effect of the higher