ﻻ يوجد ملخص باللغة العربية
The aim of this work is to obtain new analitical solutions for Einstein equations in the anisotropical domain. This will be done via the minimal geometric deformation (MGD) approach, which is a simple and systematical method that allow us to decouple the Einstein equations. It requires a perfect fluid known solution that we will choose to be Finch-Skeas(FS) solution. Two different constraints were applied, and in each case we found an interval of values for the free parameters, where necesarly other physical solutions shall live.
We implement the Gravitational Decoupling through the Minimal Geometric Deformation method and explore its effect on exterior solutions by imposing a regularity condition in the Tolman--Oppenheimer--Volkoff equation of the decoupling sector. We obtai
The Einstein-Maxwell (E-M) equations in a curved spacetime that admits at least one Killing vector are derived, from a Lagrangian density adapted to symmetries. In this context, an auxiliary space of potentials is introduced, in which, the set of pot
Exact solutions to the Einstein field equations may be generated from already existing ones (seed solutions), that admit at least one Killing vector. In this framework, a space of potentials is introduced. By the use of symmetries in this space, the
We use gravitational decoupling to establish a connection between the minimal geometric deformation approach and the standard method for obtaining anisotropic fluid solutions. Motivated by the relations that appear in the framework of minimal geometr
We extend the monumental result of Christodoulou-Klainerman on the global nonlinear stability of the Minkowski spacetime to the global nonlinear stability of a class of large dispersive spacetimes. More precisely, we show that any regular future caus