ﻻ يوجد ملخص باللغة العربية
We study the delocalization dynamics of interacting disordered hard-core bosons for quasi-1D and 2D geometries, with system sizes and time scales comparable to state-of-the-art experiments. The results are strikingly similar to the 1D case, with slow, subdiffusive dynamics featuring power-law decay. From the freezing of this decay we infer the critical disorder $W_c(L, d)$ as a function of length $L$ and width $d$. In the quasi-1D case $W_c$ has a finite large-$L$ limit at fixed $d$, which increases strongly with $d$. In the 2D case $W_c(L,L)$ grows with $L$. The results are consistent with the avalanche picture of the many-body localization transition.
Many-body localization (MBL) provides a mechanism to avoid thermalization in many-body quantum systems. Here, we show that an {it emergent} symmetry can protect a state from MBL. Specifically, we propose a $Z_2$ symmetric model with nonlocal interact
We study the dynamical melting of hot one-dimensional many-body localized systems. As disorder is weakened below a critical value these non-thermal quantum glasses melt via a continuous dynamical phase transition into classical thermal liquids. By ac
Isolated quantum systems with quenched randomness exhibit many-body localization (MBL), wherein they do not reach local thermal equilibrium even when highly excited above their ground states. It is widely believed that individual eigenstates capture
Using numerically exact methods we study transport in an interacting spin chain which for sufficiently strong spatially constant electric field is expected to experience Stark many-body localization. We show that starting from a generic initial state
We study the dynamics of an interacting quantum spin chain under the application of a linearly increasing field. This model exhibits a type of localization known as Stark many-body localization. The dynamics shows a strong dependence on the initial c