ترغب بنشر مسار تعليمي؟ اضغط هنا

Slow many-body delocalization beyond one dimension

110   0   0.0 ( 0 )
 نشر من قبل Elmer Doggen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the delocalization dynamics of interacting disordered hard-core bosons for quasi-1D and 2D geometries, with system sizes and time scales comparable to state-of-the-art experiments. The results are strikingly similar to the 1D case, with slow, subdiffusive dynamics featuring power-law decay. From the freezing of this decay we infer the critical disorder $W_c(L, d)$ as a function of length $L$ and width $d$. In the quasi-1D case $W_c$ has a finite large-$L$ limit at fixed $d$, which increases strongly with $d$. In the 2D case $W_c(L,L)$ grows with $L$. The results are consistent with the avalanche picture of the many-body localization transition.



قيم البحث

اقرأ أيضاً

Many-body localization (MBL) provides a mechanism to avoid thermalization in many-body quantum systems. Here, we show that an {it emergent} symmetry can protect a state from MBL. Specifically, we propose a $Z_2$ symmetric model with nonlocal interact ions, which has an analytically known, SU(2) invariant, critical ground state. At large disorder strength all states at finite energy density are in a glassy MBL phase, while the lowest energy states are not. These do, however, localize when a perturbation destroys the emergent SU(2) symmetry. The model also provides an example of MBL in the presence of nonlocal, disordered interactions that are more structured than a power law. The presented ideas raise the possibility of an `inverted quantum scar, in which a state that does not exhibit area law entanglement is embedded in an MBL spectrum, which does.
We study the dynamical melting of hot one-dimensional many-body localized systems. As disorder is weakened below a critical value these non-thermal quantum glasses melt via a continuous dynamical phase transition into classical thermal liquids. By ac counting for collective resonant tunneling processes, we derive and numerically solve an effective model for such quantum-to-classical transitions and compute their universal critical properties. Notably, the classical thermal liquid exhibits a broad regime of anomalously slow sub-diffusive equilibration dynamics and energy transport. The subdiffusive regime is characterized by a continuously evolving dynamical critical exponent that diverges with a universal power at the transition. Our approach elucidates the universal long-distance, low-energy scaling structure of many-body delocalization transitions in one dimension, in a way that is transparently connected to the underlying microscopic physics.
Isolated quantum systems with quenched randomness exhibit many-body localization (MBL), wherein they do not reach local thermal equilibrium even when highly excited above their ground states. It is widely believed that individual eigenstates capture this breakdown of thermalization at finite size. We show that this belief is false in general and that a MBL system can exhibit the eigenstate properties of a thermalizing system. We propose that localized approximately conserved operators (l$^*$-bits) underlie localization in such systems. In dimensions $d>1$, we further argue that the existing MBL phenomenology is unstable to boundary effects and gives way to l$^*$-bits. Physical consequences of l$^*$-bits include the possibility of an eigenstate phase transition within the MBL phase unrelated to the dynamical transition in $d=1$ and thermal eigenstates at all parameters in $d>1$. Near-term experiments in ultra-cold atomic systems and numerics can probe the dynamics generated by boundary layers and emergence of l$^*$-bits.
Using numerically exact methods we study transport in an interacting spin chain which for sufficiently strong spatially constant electric field is expected to experience Stark many-body localization. We show that starting from a generic initial state , a spin-excitation remains localized only up to a finite delocalization time, which depends exponentially on the size of the system and the strength of the electric field. This suggests that bona fide Stark many-body localization occurs only in the thermodynamic limit. We also demonstrate that the transient localization in a finite system and for electric fields stronger than the interaction strength can be well approximated by a Magnus expansion up-to times which grow with the electric field strength.
We study the dynamics of an interacting quantum spin chain under the application of a linearly increasing field. This model exhibits a type of localization known as Stark many-body localization. The dynamics shows a strong dependence on the initial c onditions, indicating that the system violates the conventional (strong) eigenstate thermalization hypothesis at any finite gradient of the field. This is contrary to reports of a numerically observed ergodic phase. Therefore, the localization is crucially distinct from disorder-driven many-body localization, in agreement with recent predictions on the basis of localization via Hilbert-space shattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا