ترغب بنشر مسار تعليمي؟ اضغط هنا

Many-body delocalization via symmetry emergence

84   0   0.0 ( 0 )
 نشر من قبل Srivatsa N. S
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many-body localization (MBL) provides a mechanism to avoid thermalization in many-body quantum systems. Here, we show that an {it emergent} symmetry can protect a state from MBL. Specifically, we propose a $Z_2$ symmetric model with nonlocal interactions, which has an analytically known, SU(2) invariant, critical ground state. At large disorder strength all states at finite energy density are in a glassy MBL phase, while the lowest energy states are not. These do, however, localize when a perturbation destroys the emergent SU(2) symmetry. The model also provides an example of MBL in the presence of nonlocal, disordered interactions that are more structured than a power law. The presented ideas raise the possibility of an `inverted quantum scar, in which a state that does not exhibit area law entanglement is embedded in an MBL spectrum, which does.



قيم البحث

اقرأ أيضاً

We study the delocalization dynamics of interacting disordered hard-core bosons for quasi-1D and 2D geometries, with system sizes and time scales comparable to state-of-the-art experiments. The results are strikingly similar to the 1D case, with slow , subdiffusive dynamics featuring power-law decay. From the freezing of this decay we infer the critical disorder $W_c(L, d)$ as a function of length $L$ and width $d$. In the quasi-1D case $W_c$ has a finite large-$L$ limit at fixed $d$, which increases strongly with $d$. In the 2D case $W_c(L,L)$ grows with $L$. The results are consistent with the avalanche picture of the many-body localization transition.
We study the dynamical melting of hot one-dimensional many-body localized systems. As disorder is weakened below a critical value these non-thermal quantum glasses melt via a continuous dynamical phase transition into classical thermal liquids. By ac counting for collective resonant tunneling processes, we derive and numerically solve an effective model for such quantum-to-classical transitions and compute their universal critical properties. Notably, the classical thermal liquid exhibits a broad regime of anomalously slow sub-diffusive equilibration dynamics and energy transport. The subdiffusive regime is characterized by a continuously evolving dynamical critical exponent that diverges with a universal power at the transition. Our approach elucidates the universal long-distance, low-energy scaling structure of many-body delocalization transitions in one dimension, in a way that is transparently connected to the underlying microscopic physics.
We theoretically study the response of a many-body localized system to a local quench from a quantum information perspective. We find that the local quench triggers entanglement growth throughout the whole system, giving rise to a logarithmic lightco ne. This saturates the modified Lieb-Robinson bound for quantum information propagation in many-body localized systems previously conjectured based on the existence of local integrals of motion. In addition, near the localization-delocalization transition, we find that the final states after the local quench exhibit volume-law entanglement. We also show that the local quench induces a deterministic orthogonality catastrophe for highly excited eigenstates, where the typical wave-function overlap between the pre- and post-quench eigenstates decays {it exponentially} with the system size.
We introduce techniques for analysing the structure of quantum states of many-body localized (MBL) spin chains by identifying correlation clusters from pairwise correlations. These techniques proceed by interpreting pairwise correlations in the state as a weighted graph, which we analyse using an established graph theoretic clustering algorithm. We validate our approach by studying the eigenstates of a disordered XXZ spin chain across the MBL to ergodic transition, as well as the non-equilibrium dyanmics in the MBL phase following a global quantum quench. We successfully reproduce theoretical predictions about the MBL transition obtained from renormalization group schemes. Furthermore, we identify a clear signature of many-body dynamics analogous to the logarithmic growth of entanglement. The techniques that we introduce are computationally inexpensive and in combination with matrix product state methods allow for the study of large scale localized systems. Moreover, the correlation functions we use are directly accessible in a range of experimental settings including cold atoms.
We theoretically study correlations present deep in the spectrum of many-body-localized systems. An exact analytical expression for the spectral form factor of Poisson spectra can be obtained and is shown to agree well with numerical results on two m odels exhibiting many-body-localization: a disordered quantum spin chain and a phenomenological $l$-bit model based on the existence of local integrals of motion. We also identify a universal regime that is insensitive to the global density of states as well as spectral edge effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا