ﻻ يوجد ملخص باللغة العربية
Isolated quantum systems with quenched randomness exhibit many-body localization (MBL), wherein they do not reach local thermal equilibrium even when highly excited above their ground states. It is widely believed that individual eigenstates capture this breakdown of thermalization at finite size. We show that this belief is false in general and that a MBL system can exhibit the eigenstate properties of a thermalizing system. We propose that localized approximately conserved operators (l$^*$-bits) underlie localization in such systems. In dimensions $d>1$, we further argue that the existing MBL phenomenology is unstable to boundary effects and gives way to l$^*$-bits. Physical consequences of l$^*$-bits include the possibility of an eigenstate phase transition within the MBL phase unrelated to the dynamical transition in $d=1$ and thermal eigenstates at all parameters in $d>1$. Near-term experiments in ultra-cold atomic systems and numerics can probe the dynamics generated by boundary layers and emergence of l$^*$-bits.
We investigate the phase transition between an ergodic and a many-body localized phase in infinite anisotropic spin-$1/2$ Heisenberg chains with binary disorder. Starting from the Neel state, we analyze the decay of antiferromagnetic order $m_s(t)$ a
We propose a method for detecting many-body localization (MBL) in disordered spin systems. The method involves pulsed, coherent spin manipulations that probe the dephasing of a given spin due to its entanglement with a set of distant spins. It allows
Sufficient disorder is believed to localize static and periodically-driven interacting chains. With quasiperiodic driving by $D$ incommensurate tones, the fate of this many-body localization (MBL) is unknown. We argue that randomly disordered MBL exi
Many-body localization (MBL) is an example of a dynamical phase of matter that avoids thermalization. While the MBL phase is robust to weak local perturbations, the fate of an MBL system coupled to a thermalizing quantum system that represents a heat
We propose a scaling theory for the many-body localization (MBL) phase transition in one dimension, building on the idea that it proceeds via a quantum avalanche. We argue that the critical properties can be captured at a coarse-grained level by a Ko