ﻻ يوجد ملخص باللغة العربية
Low levels of inertia due to increasing renewable penetration bring several challenges, such as the higher need for Primary Frequency Response (PFR). A potential solution to mitigate this problem consists on reducing the largest possible power loss in the grid. This paper develops a novel modelling framework to analyse the benefits of such approach. A new frequency-constrained Stochastic Unit Commitment (SUC) is proposed here, which allows to dynamically reduce the largest possible loss in the optimisation problem. Furthermore, the effect of load damping is included by means of an approximation, while its effect is typically neglected in previous frequency-secured-UC studies. Through several case studies, we demonstrate that reducing the largest loss could significantly decrease operational cost and carbon emissions in the future Great Britains grid.
We derive the branch ampacity constraint associated to power losses for the convex optimal power flow (OPF) model based on the branch flow formulation. The branch ampacity constraint derivation is motivated by the physical interpretation of the trans
The scheduling utility plays a fundamental role in addressing the commuting travel behaviours. In this paper, a new scheduling utility, termed as DMRD-SU, was suggested based on some recent research findings in behavioural economics. DMRD-SU admitted
Optimal power flow (OPF) is the fundamental mathematical model in power system operations. Improving the solution quality of OPF provide huge economic and engineering benefits. The convex reformulation of the original nonconvex alternating current OP
This paper considers the phenomenon of distinct regional frequencies recently observed in some power systems. First, a reduced-order mathematical model describing this behaviour is developed. Then, techniques to solve the model are discussed, demonst
It is likely that electricity storage will play a significant role in the balancing of future energy systems. A major challenge is then that of how to assess the contribution of storage to capacity adequacy, i.e. to the ability of such systems to mee