ﻻ يوجد ملخص باللغة العربية
We derive the branch ampacity constraint associated to power losses for the convex optimal power flow (OPF) model based on the branch flow formulation. The branch ampacity constraint derivation is motivated by the physical interpretation of the transmission line {Pi}-model and practical engineering considerations. We rigorously prove and derive: (i) the loop constraint of voltage phase angle, required to make the branch flow model valid for meshed power networks, is a relaxation of the original nonconvex alternating current optimal power flow (o-ACOPF) model; (ii) the necessary conditions to recover a feasible solution of the o-ACOPF model from the optimal solution of the convex second-order cone ACOPF (SOC-ACOPF) model; (iii) the expression of the global optimal solution of the o-ACOPF model providing that the relaxation of the SOC-ACOPF model is tight; (iv) the (parametric) optimal value function of the o-ACOPF or SOC-ACOPF model is monotonic with regarding to the power loads if the objective function is monotonic with regarding to the nodal power generations; (v) tight solutions of the SOC-ACOPF model always exist when the power loads are sufficiently large. Numerical experiments using benchmark power networks to validate our findings and to compare with other convex OPF models, are given and discussed.
Optimal power flow (OPF) is the fundamental mathematical model in power system operations. Improving the solution quality of OPF provide huge economic and engineering benefits. The convex reformulation of the original nonconvex alternating current OP
Despite strong connections through shared application areas, research efforts on power market optimization (e.g., unit commitment) and power network optimization (e.g., optimal power flow) remain largely independent. A notable illustration of this is
In recent years, the power systems research community has seen an explosion of novel methods for formulating the AC power flow equations. Consequently, benchmarking studies using the seminal AC Optimal Power Flow (AC-OPF) problem have emerged as the
In this paper, we study the problem of exact community recovery in the symmetric stochastic block model, where a graph of $n$ vertices is randomly generated by partitioning the vertices into $K ge 2$ equal-sized communities and then connecting each p
The trend in the electric power system is to move towards increased amounts of distributed resources which suggests a transition from the current highly centralized to a more distributed control structure. In this paper, we propose a method which ena