ترغب بنشر مسار تعليمي؟ اضغط هنا

Individual departure time decision considering departure scheduling utility

110   0   0.0 ( 0 )
 نشر من قبل Wenyi Zhang
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The scheduling utility plays a fundamental role in addressing the commuting travel behaviours. In this paper, a new scheduling utility, termed as DMRD-SU, was suggested based on some recent research findings in behavioural economics. DMRD-SU admitted the existence of positive arrival-caused utility. In addition, besides the travel-time-caused utility and arrival-caused utility, DMRD-SU firstly took the departure utility into account. The necessity of the departure utility in trip scheduling was analysed comprehensively, and the corresponding individual trip scheduling model was presented. Based on a simple network, an analytical example was executed to characterize DMRD-SU. It can be found from the analytical example that: 1) DMRD-SU can predict the accumulation departure behaviors at NDT, which explains the formation of daily serious short-peak-hours in reality, while MRD-SU cannot; 2) compared with MRD-SU, DMRD-SU predicts that people tend to depart later and its gross utility also decrease faster. Therefore, the departure utility should be considered to describe the travelers scheduling behaviors better.



قيم البحث

اقرأ أيضاً

This paper presents a systematic approach for analyzing the departure-time choice equilibrium (DTCE) problem of a single bottleneck with heterogeneous commuters. The approach is based on the fact that the DTCE is equivalently represented as a linear programming problem with a special structure, which can be analytically solved by exploiting the theory of optimal transport combined with a decomposition technique. By applying the proposed approach to several types of models with heterogeneous commuters, it is shown that (i) the essential condition for emerging equilibrium sorting patterns, which have been known in the literature, is that the schedule delay functions have the Monge property, (ii) the equilibrium problems with the Monge property can be solved analytically, and (iii) the proposed approach can be applied to a more general problem with more than two types of heterogeneities.
With increased frequency and intensity due to climate change, wildfires have become a growing global concern. This creates severe challenges for fire and emergency services as well as communities in the wildland-urban interface (WUI). To reduce wildf ire risk and enhance the safety of WUI communities, improving our understanding of wildfire evacuation is a pressing need. To this end, this study proposes a new methodology to analyze human behavior during wildfires by leveraging a large-scale GPS dataset. This methodology includes a home-location inference algorithm and an evacuation-behavior inference algorithm, to systematically identify different groups of wildfire evacuees (i.e., self-evacuee, shadow evacuee, evacuee under warning, and ordered evacuee). We applied the methodology to the 2019 Kincade Fire in Sonoma County, CA. We found that among all groups of evacuees, self-evacuees and shadow evacuees accounted for more than half of the evacuees during the Kincade Fire. The results also show that inside of the evacuation warning/order zones, the total evacuation compliance rate was around 46% among all the categorized people. The findings of this study can be used by emergency managers and planners to better target public outreach campaigns, training protocols, and emergency communication strategies to prepare WUI households for future wildfire events.
Active matter systems are driven out of equilibrium at the level of individual constituents. One widely studied class are systems of athermal particles that move under the combined influence of interparticle interactions and self-propulsions, with th e latter evolving according to the Ornstein-Uhlenbeck stochastic process. Intuitively, these so-called active Ornstein-Uhlenbeck particles (AOUPs) systems are farther from equilibrium for longer self-propulsion persistence times. Quantitatively, this is confirmed by the increasing equal-time velocity correlations (which are trivial in equilibrium) and by the increasing violation of the Einstein relation between the self-diffusion and mobility coefficients. In contrast, the entropy production rate, calculated from the ratio of the probabilities of the position space trajectory and its time-reversed counterpart, has a non-monotonic dependence on the persistence time. Thus, it does not properly quantify the departure of AOUPs systems from equilibrium.
The pi bands of epitaxially grown graphene are studied by using high resolution angle resolved photoemission spectroscopy. Clear deviations from the conical dispersion expected for massless Dirac fermions and an anomalous increase of the scattering r ate are observed in the vicinity of the Dirac point energy. Possible explanations for such anomalies are discussed in terms of many-body interactions and the opening of a gap. We present detailed experimental evidences in support of the gap scenario. This finding reveals a fundamental intrinsic property of epitaxial graphene and demonstrates the possibility of engineering the band gap in epitaxial graphene.
The NuTeV experiment has performed precision measurements of the ratio of neutral-current to charged-current cross-sections in high rate, high energy neutrino and anti-neutrino beams on a dense, primarily steel, target. The separate neutrino and anti -neutrino beams, high statistics, and improved control of other experimental systematics, allow the determination of electroweak parameters with significantly greater precision than past neutrino-nucleon scattering experiments. Our null hypothesis test of the standard model prediction measures sin2thetaW=0.2277+/-0.0013(stat)+/-0.0009(syst), a value which is 3.0 standard deviations above the prediction. We discuss possible explanations for and implications of this discrepancy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا