ﻻ يوجد ملخص باللغة العربية
We study the store-and-forward packet routing problem for simultaneous multicasts, in which multiple packets have to be forwarded along given trees as fast as possible. This is a natural generalization of the seminal work of Leighton, Maggs and Rao, which solved this problem for unicasts, i.e. the case where all trees are paths. They showed the existence of asymptotically optimal $O(C + D)$-length schedules, where the congestion $C$ is the maximum number of packets sent over an edge and the dilation $D$ is the maximum depth of a tree. This improves over the trivial $O(CD)$ length schedules. We prove a lower bound for multicasts, which shows that there do not always exist schedules of non-trivial length, $o(CD)$. On the positive side, we construct $O(C+D+log^2 n)$-length schedules in any $n$-node network. These schedules are near-optimal, since our lower bound shows that this length cannot be improved to $O(C+D) + o(log n)$.
We consider the model of communication where wireless devices can either switch their radios off to save energy, or switch their radios on and engage in communication. We distill a clean theoretical formulation of this problem of minimizing radio use
Identifying the connected components of a graph, apart from being a fundamental problem with countless applications, is a key primitive for many other algorithms. In this paper, we consider this problem in parallel settings. Particularly, we focus on
Given a weighted undirected graph $G=(V,E,w)$, a hopset $H$ of hopbound $beta$ and stretch $(1+epsilon)$ is a set of edges such that for any pair of nodes $u, v in V$, there is a path in $G cup H$ of at most $beta$ hops, whose length is within a $(1+
In the model of online caching with machine learned advice, introduced by Lykouris and Vassilvitskii, the goal is to solve the caching problem with an online algorithm that has access to next-arrival predictions: when each input element arrives, the
Let $G = (V,E,w)$ be a weighted undirected graph on $|V| = n$ vertices and $|E| = m$ edges, let $k ge 1$ be any integer, and let $epsilon < 1$ be any parameter. We present the following results on fast constructions of spanners with near-optimal spar