ﻻ يوجد ملخص باللغة العربية
Given a weighted undirected graph $G=(V,E,w)$, a hopset $H$ of hopbound $beta$ and stretch $(1+epsilon)$ is a set of edges such that for any pair of nodes $u, v in V$, there is a path in $G cup H$ of at most $beta$ hops, whose length is within a $(1+epsilon)$ factor from the distance between $u$ and $v$ in $G$. We show the first efficient decremental algorithm for maintaining hopsets with a polylogarithmic hopbound. The update time of our algorithm matches the best known static algorithm up to polylogarithmic factors. All the previous decremental hopset constructions had a superpolylogarithmic (but subpolynomial) hopbound of $2^{log^{Omega(1)} n}$ [Bernstein, FOCS09; HKN, FOCS14; Chechik, FOCS18]. By applying our decremental hopset construction, we get improved or near optimal bounds for several distance problems. Most importantly, we show how to decrementally maintain $(2k-1)(1+epsilon)$-approximate all-pairs shortest paths (for any constant $k geq 2)$, in $tilde{O}(n^{1/k})$ amortized update time and $O(k)$ query time. This significantly improves (by a polynomial factor) over the update-time of the best previously known decremental algorithm in the constant query time regime. Moreover, it improves over the result of [Chechik, FOCS18] that has a query time of $O(log log(nW))$, where $W$ is the aspect ratio, and the amortized update time is $n^{1/k}cdot(frac{1}{epsilon})^{tilde{O}(sqrt{log n})}$. For sparse graphs our construction nearly matches the best known static running time/ query time tradeoff.
In the decremental Single-Source Shortest Path problem (SSSP), we are given a weighted directed graph $G=(V,E,w)$ undergoing edge deletions and a source vertex $r in V$; let $n = |V|, m = |E|$ and $W$ be the aspect ratio of the graph. The goal is to
We study the decremental All-Pairs Shortest Paths (APSP) problem in undirected edge-weighted graphs. The input to the problem is an $n$-vertex $m$-edge graph $G$ with non-negative edge lengths, that undergoes a sequence of edge deletions. The goal is
We give the first Congested Clique algorithm that computes a sparse hopset with polylogarithmic hopbound in polylogarithmic time. Given a graph $G=(V,E)$, a $(beta,epsilon)$-hopset $H$ with hopbound $beta$, is a set of edges added to $G$ such that fo
We study the vertex-decremental Single-Source Shortest Paths (SSSP) problem: given an undirected graph $G=(V,E)$ with lengths $ell(e)geq 1$ on its edges and a source vertex $s$, we need to support (approximate) shortest-path queries in $G$, as $G$ un
In the model of online caching with machine learned advice, introduced by Lykouris and Vassilvitskii, the goal is to solve the caching problem with an online algorithm that has access to next-arrival predictions: when each input element arrives, the