ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-Optimal Bounds for Online Caching with Machine Learned Advice

165   0   0.0 ( 0 )
 نشر من قبل Dhruv Rohatgi
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Dhruv Rohatgi




اسأل ChatGPT حول البحث

In the model of online caching with machine learned advice, introduced by Lykouris and Vassilvitskii, the goal is to solve the caching problem with an online algorithm that has access to next-arrival predictions: when each input element arrives, the algorithm is given a prediction of the next time when the element will reappear. The traditional model for online caching suffers from an $Omega(log k)$ competitive ratio lower bound (on a cache of size $k$). In contrast, the augmented model admits algorithms which beat this lower bound when the predictions have low error, and asymptotically match the lower bound when the predictions have high error, even if the algorithms are oblivious to the prediction error. In particular, Lykouris and Vassilvitskii showed that there is a prediction-augmented caching algorithm with a competitive ratio of $O(1+min(sqrt{eta/OPT}, log k))$ when the overall $ell_1$ prediction error is bounded by $eta$, and $OPT$ is the cost of the optimal offline algorithm. The dependence on $k$ in the competitive ratio is optimal, but the dependence on $eta/OPT$ may be far from optimal. In this work, we make progress towards closing this gap. Our contributions are twofold. First, we provide an improved algorithm with a competitive ratio of $O(1 + min((eta/OPT)/k, 1) log k)$. Second, we provide a lower bound of $Omega(log min((eta/OPT)/(k log k), k))$.



قيم البحث

اقرأ أيضاً

The classical analysis of online algorithms, due to its worst-case nature, can be quite pessimistic when the input instance at hand is far from worst-case. Often this is not an issue with machine learning approaches, which shine in exploiting pattern s in past inputs in order to predict the future. However, such predictions, although usually accurate, can be arbitrarily poor. Inspired by a recent line of work, we augment three well-known online settings with machine learned predictions about the future, and develop algorithms that take them into account. In particular, we study the following online selection problems: (i) the classical secretary problem, (ii) online bipartite matching and (iii) the graphic matroid secretary problem. Our algorithms still come with a worst-case performance guarantee in the case that predictions are subpar while obtaining an improved competitive ratio (over the best-known classical online algorithm for each problem) when the predictions are sufficiently accurate. For each algorithm, we establish a trade-off between the competitive ratios obtained in the two respective cases.
The bin covering problem asks for covering a maximum number of bins with an online sequence of $n$ items of different sizes in the range $(0,1]$; a bin is said to be covered if it receives items of total size at least 1. We study this problem in the advice setting and provide tight bounds for the size of advice required to achieve optimal solutions. Moreover, we show that any algorithm with advice of size $o(log log n)$ has a competitive ratio of at most 0.5. In other words, advice of size $o(log log n)$ is useless for improving the competitive ratio of 0.5, attainable by an online algorithm without advice. This result highlights a difference between the bin covering and the bin packing problems in the advice model: for the bin packing problem, there are several algorithms with advice of constant size that outperform online algorithms without advice. Furthermore, we show that advice of size $O(log log n)$ is sufficient to achieve a competitive ratio that is arbitrarily close to $0.53bar{3}$ and hence strictly better than the best ratio $0.5$ attainable by purely online algorithms. The technicalities involved in introducing and analyzing this algorithm are quite different from the existing results for the bin packing problem and confirm the different nature of these two problems. Finally, we show that a linear number of bits of advice is necessary to achieve any competitive ratio better than 15/16 for the online bin covering problem.
We consider online algorithms for the {em page migration problem} that use predictions, potentially imperfect, to improve their performance. The best known online algorithms for this problem, due to Westbrook94 and Bienkowski et al17, have competitiv e ratios strictly bounded away from 1. In contrast, we show that if the algorithm is given a prediction of the input sequence, then it can achieve a competitive ratio that tends to $1$ as the prediction error rate tends to $0$. Specifically, the competitive ratio is equal to $1+O(q)$, where $q$ is the prediction error rate. We also design a ``fallback option that ensures that the competitive ratio of the algorithm for {em any} input sequence is at most $O(1/q)$. Our result adds to the recent body of work that uses machine learning to improve the performance of ``classic algorithms.
Caches are a fundamental component of latency-sensitive computer systems. Recent work of [ASWB20] has initiated the study of delayed hits: a phenomenon in caches that occurs when the latency between the cache and backing store is much larger than the time between new requests. We present two results for the delayed hits caching model. (1) Competitive ratio lower bound. We prove that the competitive ratio of the algorithm in [ASWB20], and more generally of any deterministic online algorithm for delayed hits, is at least Omega(kZ), where k is the cache size and Z is the delay parameter. (2) Antimonotonicity of the delayed hits latency. Antimonotonicity is a naturally desirable property of cache latency: having a cache hit instead of a cache miss should result in lower overall latency. We prove that the latency of the delayed hits model is not antimonotone by exhibiting a scenario where having a cache hit instead of a miss results in an increase in overall latency. We additionally present a modification of the delayed hits model that makes the latency antimonotone.
We initiate the study of a natural and practically relevant new variant of online caching where the to-be-cached items can have dependencies. We assume that the universe is a tree T and items are tree nodes; we require that if a node v is cached then the whole subtree T(v) rooted at v is cached as well. This theoretical problem finds an immediate application in the context of forwarding table optimization in IP routing and software-defined networks. We present an elegant online deterministic algorithm TC for this problem, and rigorously prove that its competitive ratio is O(height(T) * k_ALG/(k_ALG-k_OPT+1)), where k_ALG and k_OPT denote the cache sizes of an online and the optimal offline algorithm, respectively. The result is optimal up to a factor of O(height(T)).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا