ﻻ يوجد ملخص باللغة العربية
Molecular electronic spins represent one of the most promising building blocks for the design of quantum computing architectures. However, the advancement of this technology requires the increase of spin lifetime at ambient temperature. Spin-phonon coupling has been recognized as the key interaction dictating spin relaxation at high temperature in molecular crystals and the search for chemical-design principles to control such interaction are a fundamental challenge in the field. Here we present a multi-reference first-principles analysis of the g-tensor and the spin-phonon coupling in a series of four exa-coordinate Vanadium(IV) molecular complexes, where the catecholate ligand donor atom is progressively changed from Oxygen to Sulphur, Selenium and Tellurium. A ligand field interpretation of the multi-reference electronic structure theory results made it possible to rationalize the correlation between the molecular g-shifts and the average spin-phonon coupling coefficients, revealing the role of spin-orbit coupling, chemical bond covalency and energy splitting of d-like orbitals in spin relaxation. Our study reveals the simultaneous increase of metal-ligand covalency and electronic excited state energy separation as key elements of an optimal strategy towards long spin-lattice lifetimes in molecular qubits.
Paramagnetic molecules can show long spin-coherence times, which make them good candidates as quantum bits. Reducing the efficiency of the spin-phonon interaction is the primary challenge towards achieving long coherence times over a wide temperature
The realisation of quantum computers based on molecular electronic spins requires the design of qubits with very long coherence times, T2. Dephasing can proceed over several different microscopic pathways, active at the same time and in different reg
The coupling between electronic spins and lattice vibrations is fundamental for driving relaxation in magnetic materials. The debate over the nature of spin-phonon coupling dates back to the 40s, but the role of spin-spin, spin-orbit and hyperfine in
Spin-orbit coupling (SOC) is essential in understanding the properties of 5d transition metal compounds, whose SOC value is large and almost comparable to other key parameters. Over the past few years, there have been numerous studies on the SOC-driv
The effect of electron-phonon interactions on optical absorption spectra requires a special treatment in materials with strong electron-hole interactions. We conceptualize these effects as exciton-phonon coupling. Through phonon absorption and emissi