ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-Phonon Relaxation in Molecular Qubits from First Principles Spin Dynamics

92   0   0.0 ( 0 )
 نشر من قبل Alessandro Lunghi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The coupling between electronic spins and lattice vibrations is fundamental for driving relaxation in magnetic materials. The debate over the nature of spin-phonon coupling dates back to the 40s, but the role of spin-spin, spin-orbit and hyperfine interactions, has never been fully established. Here we present a comprehensive study of the spin dynamics of a crystal of Vanadyl-based molecular qubits by means of first-order perturbation theory and first-principles calculations. We quantitatively determine the role of the Zeeman, hyperfine and electronic spin dipolar interactions in the direct mechanism of spin relaxation. We show that, in a high magnetic field regime, the modulation of the Zeeman Hamiltonian by the intra-molecular components of the acoustic phonons dominates the relaxation mechanism. In low fields, hyperfine coupling takes over, with the role of spin-spin dipolar interaction remaining the less important for the spin relaxation.



قيم البحث

اقرأ أيضاً

Paramagnetic molecules can show long spin-coherence times, which make them good candidates as quantum bits. Reducing the efficiency of the spin-phonon interaction is the primary challenge towards achieving long coherence times over a wide temperature range in soft molecular lattices. The lack of a microscopic understanding about the role of vibrations in spin relaxation strongly undermines the possibility to chemically design better performing molecular qubits. Here we report a first-principles characterization of the main mechanism contributing to the spin-phonon coupling for a class of vanadium(IV) molecular qubits. Post Hartree Fock and Density Functional Theory are used to determine the effect of both reticular and intra-molecular vibrations on the modulation of the Zeeman energy for four molecules showing different coordination geometries and ligands. This comparative study provides the first insight into the role played by coordination geometry and ligand field strength in determining the spin-lattice relaxation time of molecular qubits, opening the avenue to a rational design of new compounds.
Electron-phonon ($e$-ph) interactions are key to understanding the dynamics of electrons in materials, and can be modeled accurately from first-principles. However, when electrons and holes form Coulomb-bound states (excitons), quantifying their inte ractions and scattering processes with phonons remains an open challenge. Here we show a rigorous approach for computing exciton-phonon (ex-ph) interactions and the associated exciton dynamical processes from first principles. Starting from the ab initio Bethe-Salpeter equation, we derive expressions for the ex-ph matrix elements and relaxation times. We apply our method to bulk hexagonal boron nitride, for which we map the ex-ph relaxation times as a function of exciton momentum and energy, analyze the temperature and phonon-mode dependence of the ex-ph scattering processes, and accurately predict the phonon-assisted photoluminescence. The approach introduced in this work is general and provides a framework for investigating exciton dynamics in a wide range of materials.
For quantum computing to become fault tolerant, the underlying quantum bits must be effectively isolated from the noisy environment. It is well known that including an electromagnetic bandgap around the qubit operating frequency improves coherence fo r superconducting circuits. However, investigations of bandgaps to other environmental coupling mechanisms remain largely unexplored. Here we present a method to enhance the coherence of superconducting circuits by introducing a phononic bandgap around the device operating frequency. The phononic bandgaps block resonant decay of defect states within the gapped frequency range, removing the electromagnetic coupling to phonons at the gap frequencies. We construct a multi-scale model that derives the decrease in the density of states due to the bandgap and the resulting increase in defect state $T_1$ times. We demonstrate that emission rates from in-plane defect states can be suppressed by up to two orders of magnitude. We combine these simulations with theory for resonators operated in the continuous-wave regime and show that improvements in quality factors are expected by up to the enhancement in defect $T_1$ times. Furthermore, we use full master equation simulation to demonstrate the suppression of qubit energy relaxation even when interacting with 200 defects states. We conclude with an exploration of device implementation including tradeoffs between fabrication complexity and qubit performance.
71 - K. Xia 2005
Details are presented of an efficient formalism for calculating transmission and reflection matrices from first principles in layered materials. Within the framework of spin density functional theory and using tight-binding muffin-tin orbitals, scatt ering matrices are determined by matching the wave-functions at the boundaries between leads which support well-defined scattering states and the scattering region. The calculation scales linearly with the number of principal layers N in the scattering region and as the cube of the number of atoms H in the lateral supercell. For metallic systems for which the required Brillouin zone sampling decreases as H increases, the final scaling goes as H^2*N. In practice, the efficient basis set allows scattering regions for which H^{2}*N ~ 10^6 to be handled. The method is illustrated for Co/Cu multilayers and single interfaces using large lateral supercells (up to 20x20) to model interface disorder. Because the scattering states are explicitly found, ``channel decomposition of the interface scattering for clean and disordered interfaces can be performed.
The divacancies in SiC are a family of paramagnetic defects that show promise for quantum communication technologies due to their long-lived electron spin coherence and their optical addressability at near-telecom wavelengths. Nonetheless, a mechanis m for high-fidelity spin-to-photon conversion, which is a crucial prerequisite for such technologies, has not yet been demonstrated. Here we demonstrate a high-fidelity spin-to-photon interface in isolated divacancies in epitaxial films of 3C-SiC and 4H-SiC. Our data show that divacancies in 4H-SiC have minimal undesirable spin-mixing, and that the optical linewidths in our current sample are already similar to those of recent remote entanglement demonstrations in other systems. Moreover, we find that 3C-SiC divacancies have millisecond Hahn-echo spin coherence time, which is among the longest measured in a naturally isotopic solid. The presence of defects with these properties in a commercial semiconductor that can be heteroepitaxially grown as a thin film on shows promise for future quantum networks based on SiC defects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا