ﻻ يوجد ملخص باللغة العربية
In this paper, we present infinite families of permutations of $mathbb{F}_{2^{2n}}$ with high nonlinearity and boomerang uniformity $4$ from generalized butterfly structures. Both open and closed butterfly structures are considered. It appears, according to experiment results, that open butterflies do not produce permutation with boomerang uniformity $4$. For the closed butterflies, we propose the condition on coefficients $alpha, beta in mathbb{F}_{2^n}$ such that the functions $$V_i := (R_i(x,y), R_i(y,x))$$ with $R_i(x,y)=(x+alpha y)^{2^i+1}+beta y^{2^i+1}$ are permutations of $mathbb{F}_{2^n}^2$ with boomerang uniformity $4$, where $ngeq 1$ is an odd integer and $gcd(i, n)=1$. The main result in this paper consists of two major parts: the permutation property of $V_i$ is investigated in terms of the univariate form, and the boomerang uniformity is examined in terms of the original bivariate form. In addition, experiment results for $n=3, 5$ indicates that the proposed condition seems to cover all coefficients $alpha, beta in mathbb{F}_{2^n}$ that produce permutations $V_i$ with boomerang uniformity $4$. However, the experiment result shows that the quadratic permutation $V_i$ seems to be affine equivalent to the Gold function. Therefore, unluckily, we may not to obtain new permutations with boomerang uniformity $4$ from the butterfly structure.
As a generalization of Dillons APN permutation, butterfly structure and generalizations have been of great interest since they generate permutations with the best known differential and nonlinear properties over the field of size $2^{4k+2}$. Compleme
Strong external difference family (SEDF) and its generalizations GSEDF, BGSEDF in a finite abelian group $G$ are combinatorial designs raised by Paterson and Stinson [7] in 2016 and have applications in communication theory to construct optimal stron
A recent unlabeled sampling result by Unnikrishnan, Haghighatshoar and Vetterli states that with probability one over iid Gaussian matrices $A$, any $x$ can be uniquely recovered from an unknown permutation of $y = A x$ as soon as $A$ has at least tw
Pairs of binary sequences formed using linear combinations of multiplicative characters of finite fields are exhibited that, when compared to random sequence pairs, simultaneously achieve significantly lower mean square autocorrelation values (for ea
This paper focuses on the combined radar and communications problem and conducts a thorough analytical investigation on the effect of phase and frequency change on the communication and sensing functionality. First, we consider the classical stepped