ﻻ يوجد ملخص باللغة العربية
As a generalization of Dillons APN permutation, butterfly structure and generalizations have been of great interest since they generate permutations with the best known differential and nonlinear properties over the field of size $2^{4k+2}$. Complementary to these results, we show in this paper that butterfly structure, more precisely the closed butterfly also yields permutations with the best boomerang uniformity, a new and important parameter related to boomerang-style attacks. This is the sixth known infinite family of permutations in the literature with the best known boomerang uniformity over such fields.
We study a class of general quadrinomials over the field of size $2^{2m}$ with odd $m$ and characterize conditions under which they are permutations with the best boomerang uniformity, a new and important parameter related to boomerang-style attacks.
In this paper, we present infinite families of permutations of $mathbb{F}_{2^{2n}}$ with high nonlinearity and boomerang uniformity $4$ from generalized butterfly structures. Both open and closed butterfly structures are considered. It appears, acc
Streaming codes represent a packet-level FEC scheme for achieving reliable, low-latency communication. In the literature on streaming codes, the commonly-assumed Gilbert-Elliott channel model, is replaced by a more tractable, delay-constrained, slidi
This paper presents a novel successive factor-graph permutation (SFP) scheme that significantly improves the error-correction performance of Reed-Muller (RM) codes under successive-cancellation list (SCL) decoding. In particular, we perform maximum-l
Distributed Compressive Sensing (DCS) improves the signal recovery performance of multi signal ensembles by exploiting both intra- and inter-signal correlation and sparsity structure. However, the existing DCS was proposed for a very limited ensemble