ﻻ يوجد ملخص باللغة العربية
A recent unlabeled sampling result by Unnikrishnan, Haghighatshoar and Vetterli states that with probability one over iid Gaussian matrices $A$, any $x$ can be uniquely recovered from an unknown permutation of $y = A x$ as soon as $A$ has at least twice as many rows as columns. We show that this condition on $A$ implies something much stronger: that an unknown vector $x$ can be recovered from measurements $y = T A x$, when the unknown $T$ belongs to an arbitrary set of invertible, diagonalizable linear transformations $mathcal{T}$. The set $mathcal{T}$ can be finite or countably infinite. When it is the set of $m times m$ permutation matrices, we have the classical unlabeled sampling problem. We show that for almost all $A$ with at least twice as many rows as columns, all $x$ can be recovered either uniquely, or up to a scale depending on $mathcal{T}$, and that the condition on the size of $A$ is necessary. Our proof is based on vector space geometry. Specializing to permutations we obtain a simplified proof of the uniqueness result of Unnikrishnan, Haghighatshoar and Vetterli. In this letter we are only concerned with uniqueness; stability and algorithms are left for future work.
This paper focuses on the combined radar and communications problem and conducts a thorough analytical investigation on the effect of phase and frequency change on the communication and sensing functionality. First, we consider the classical stepped
The recent emergence of orthogonal time frequency space (OTFS) modulation as a novel PHY-layer mechanism is more suitable in high-mobility wireless communication scenarios than traditional orthogonal frequency division multiplexing (OFDM). Although m
This paper studies a large unitarily invariant system (LUIS) involving a unitarily invariant sensing matrix, an arbitrary signal distribution, and forward error control (FEC) coding. We develop a universal Gram-Schmidt orthogonalization for orthogona
In this paper, we present infinite families of permutations of $mathbb{F}_{2^{2n}}$ with high nonlinearity and boomerang uniformity $4$ from generalized butterfly structures. Both open and closed butterfly structures are considered. It appears, acc
Donoho and Stark have shown that a precise deterministic recovery of missing information contained in a time interval shorter than the time-frequency uncertainty limit is possible. We analyze this signal recovery mechanism from a physics point of vie