ﻻ يوجد ملخص باللغة العربية
The ability to controllably manipulate the complex topological polar configurations, such as polar flux-closure via external stimuli, enables many applications in electromechanical devices and nanoelectronics including high-density information storage. Here, by using the atomically resolved in situ scanning transmission electron microscopy, we find that a polar flux-closure structure in PbTiO3/SrTiO3 superlattices films can be reversibly switched to ordinary mono ferroelectric c domain or a domain under electric field or stress. Specifically, the electric field initially drives the flux-closure move and breaks them to form intermediate a/c striped domains, while the mechanical stress firstly starts to squeeze the flux-closures to convert into small vortices at the interface and form a continues dipole wave. After the removal of the external stimuli, the flux-closure structure spontaneously returns. Our atomic study provides valuable insights into understanding the lattice-charge interactions and the competing interactions balance in these complex topological structures. Such reversible switching between the flux-closure and ordinary ferroelectric domains also provides the foundation for applications such as memories and sensors.
Electrical manipulation of emergent phenomena due to nontrivial band topology is a key to realize next-generation technology using topological protection. A Weyl semimetal is a three-dimensional gapless system that hosts Weyl fermions as low-energy q
Topological phases such as polar skyrmions have been a fertile playground for ferroelectric oxide superlattices, with exotic physical phenomena such as negative capacitance. Herein, using phase-field simulations, we demonstrate the local control of t
Entropy is a fundamental thermodynamic quantity that is a measure of the accessible microstates available to a system, with the stability of a system determined by the magnitude of the total entropy of the system. This is valid across truly mind bogg
The interfacial screening charge that arises to compensate electric fields of dielectric or ferroelectric thin films is now recognized as the most important factor in determining the capacitance or polarization of ultrathin ferroelectrics. Here we in
Electrical manipulation of lattice, charge, and spin has been realized respectively by the piezoelectric effect, field-effect transistor, and electric field control of ferromagnetism, bringing about dramatic promotions both in fundamental research an